

Alterations and Additions to the Gladesville Bay Marina 380 Victoria Place, Drummoyne NSW 2047

Gladesville Bay Marina Pty Ltd 30 September 2019 18166

Quality Management

Document Distribution

Issue/Revision	Draft	Final	Revision 1
Remarks	Draft	Final	Revision 1
Date	2 August 2019	16 September 2019	30 September 2019
Prepared by	Tyler Creese Senior Environmental Consultant Joshua Bray Senior Consultant	Tyler Creese Senior Environmental Consultant	Tyler Creese Senior Environmental Consultant
Signature	Draft	your	your
Reviewed by	Peter Moore Principal Engineer CEnvP	Peter Moore Principal Engineer CEnvP	Peter Moore Principal Engineer CEnvP
Signature	Draft	A	A
File reference	Contamination Investigation - Gladesville Marina Aug19.docx	Contamination Investigation - Gladesville Marina Sep19.docx	Contamination Investigation - Gladesville Marina Sep19 (Rev 1).docx
Distribution	 Gladesville Bay Marina Pty Ltd Zoic Electronic File 	 Gladesville Bay Marina Pty Ltd Zoic Electronic File 	 Gladesville Bay Marina Pty Ltd Zoic Electronic File

This report was prepared in accordance with the scope of services set out in the contract between Zoic Environmental Pty Ltd, ABN 23 154 745 525, and the client.

Zoic Environmental Pty Ltd ABN 23 154 745 525 Suite 1, Level 9 189 Kent Street, Sydney 2000 Phone: +61 2 9251 8070

www.zoic.com.au

Executive Summary

Zoic Environmental Pty Ltd (Zoic) was requested by Gladesville Bay Marina Pty Ltd to complete a contamination assessment of soil, sediment and groundwater at 380 Victoria Place, Drummoyne, NSW ("the site"), to support a development application. The development application relates to a proposed extension and upgrading of facilities on site, including extending the marina. Available information indicates that site excavation is not proposed during site redevelopment. The slipway has been considered as a component of this investigation, noting that slipway portions extend beyond the site boundary into Parramatta River.

The assessment included a desktop study of relevant background information, and an intrusive investigation on site, including the installation of groundwater monitoring wells. The desktop study found two underground petrol storage tank's had been removed from site, and that the use of Organotins (tributyltin - TBT) was likely in boat cleaning and maintenance activities. Zoic drilled five boreholes and installed two groundwater wells, including the collection of soil samples from the soil profile, sampling of the wells and collection of sediment samples from three locations, including two adjoining the site's boat slipway.

Reported concentrations of petroleum hydrocarbons (TPH), heavy metals (copper, nickel, lead, mercury and zinc), and organotins (TBT) exceed the adopted criteria in slipway sediments/soils. Sediment impact was additionally identified in samples collected from Parramatta River, adjacent to the site, by Zoic and Marine Pollution Research Pty Ltd. Site redevelopment work that is to be carried out on the slipway and workshop area would be subject to a Remedial Action Plan (RAP) as sediments/soils pose potential ecological and human health exposure risk. The RAP will require additional assessment of contaminant concentrations along the slipway, propose remedial measures, and detail site management requirements. Site materials impacted with organotins will require management in accordance with the NSW EPA Organotin Waste Materials Chemical Control Order 1989, which requires that organotin waste produced during the application or removal of antifouling compounds from marine vessels shall be promptly collected for disposal, and shall be prevented from entering any waters. The order states that organotin waste materials shall be disposed of in a controlled landfill in sealed containers. NSW EPA approval is required for any disposal of TBT source material (e.g. paint chips and blasting grit) and organotin impacted soils as waste to landfill. It is considered that site materials exhibiting hydrocarbon and heavy metal impact could be managed accordingly, subject to collection of additional waste classification data.

The results of this investigation indicate that any extension/improvement of the marina facilities must take into consideration the need to avoid/reduce sediment disturbance in areas proximate to the slipway to minimise impacts to marine flora and fauna. It is understood that the slipway area will not be used for maintenance operations under the new marina design and the underlying concrete slab will not be physically altered or removed as part of the works. It is noted that sediments beneath the slipway hard stand require further assessment, as the site was operational at the time of investigation to confirm that the risk from potential contaminants under the slipway are acceptable for any future use of the land. Groundwater monitoring results indicate a low risk to human health and the environment. Based on results of this investigation, there is considered to be a low likelihood that the former UST tankpit has any ongoing impact on soil or groundwater conditions on site.

Based on observed contaminant concentrations in slipway sediments, site activities must be managed to ensure that site workers and future site occupants are not exposed to soils and sediments within / beneath the slipway and workshop areas.

Table of Contents

Exe	ecutive Summary	2
1.	Introduction	
2.	Site Identification	6
З.	Site Condition and Environment	7
4.	Geology, Hydrogeology and Hydrology	8
5.	Site History	10
6.	Conceptual Site Model	13
7.	Data Quality Objectives	15
8.	Sampling and Analysis Plan	
9.	Evaluation of QA/QC	22
10.	Site Assessment Criteria	23
11.	Field Observations	26
12.	Laboratory Results	28
13.	Discussion	29
14.	Conclusions and Recommendations	31
15.	References	32
16.	Limitations	33

Figures

Figure 1: Site Location Plan
Figure 2: Site Layout
Figure 3: Sampling Locations
Figure 4: Site Exceedances
Figure 5: Site Work Considerations

Appendices

Appendix A	Figures
Appendix B	Result Summary Tables
Appendix C	Laboratory Certificates
Appendix D	Enviro-Screen Report
Appendix E	Calibration Certificates
Appendix F	RPD Tables
Appendix G	QA/QC Assessment

0

Appendix H	Borehole Logs
Appendix I	Field GME Logs
Appendix J	Dangerous Goods Search
Appendix K	Hazardous Materials List
Appendix L	Background Sediment Data

1. Introduction

1.1 Background

Zoic Environmental Pty Ltd (Zoic) was engaged by Gladesville Bay Marina Pty Ltd (GBM) ("the client") to conduct a Contamination Investigation for the Gladesville Bay Marina, located at 380 Victoria Place, Drummoyne NSW ("the site"). It is understood the client requires this report for submission with a Development Application to the City of Canada Bay Council (Council), relating to the proposed extensions to, and upgrading of facilities at the marina.

The site location and layout are shown in Figures 1 and 2 of Appendix A.

1.2 Objective

The objective was to investigate soil, sediment and groundwater contamination at the site, with respect to relevant human health and ecological criteria, to support submission of a Development Application to Council.

1.3 Scope of Work

The scope of works completed during this investigation included:

- Completion of a desktop study for the site to obtain relevant background information.
- Completion of a site inspection to assess site conditions.
- Service clearance to confirm absence of underground services.
- Drilling of boreholes at five locations in or close proximity to the proposed development area, with collection of samples from underlying soils.
- Conversion of two of the drilled boreholes into groundwater monitoring wells.
- Development, purging and sampling of the groundwater wells.
- Collection of sediment samples from targeted foreshore areas.
- NATA accredited laboratory analysis of selected soil samples for heavy metals (As, Cd, Cr, Cu, Ni, Pb, Hg, Zn), petroleum hydrocarbons (TRH/BTEX), polycyclic aromatic hydrocarbons (PAHs), Organotins Tributyltin (TBT), and asbestos.
- NATA accredited laboratory analysis of sediment samples for heavy metals, TRH/BTEX, PAHs and TBT.
- NATA accredited laboratory analysis of groundwater samples for heavy metals, TRH/BTEX and PAHs.
- Determination of groundwater flow direction across the site by surveying the wells.
- Preparation of a contamination investigation report of the targeted areas in general accordance with NSW OEH (2011) Guidelines for Consultants Reporting on Contaminated Sites

2. Site Identification

2.1 Site Identification

Relevant site information is provided in Table 2.1.

Table 2.1: Site Identification

Title	Details
Street Address:	380 Victoria Place, Drummoyne NSW 2047
Property Description:	Lot B DP401843 (western portion of site) Lot 1 DP430123 (central portion of site) Lot 1 DP 549352 (eastern portion of site)
Current Site Ownership:	Gladesville Bay Marina Pty Ltd
Geographical Coordinates (approx. to centre of site):	Lat: -33.8440 Long: 151.1454
Property Size:	940 m ²
Local Government Area:	City of Canada Bay Council
Current Use	Marina and marine repair facility
Zoning – Existing:	Medium Density Residential (Canada Bay Local Environmental Plan)

2.2 Surrounding Land Use

Land uses immediately adjoining the site are described in Table 2.2.

Table 2.2: Immediate Site Surrounds

Title	Details
North-east:	Parramatta River.
South-East:	Residential properties.
South-west:	Victoria Place with recreational property beyond.
North-West:	Access driveway with Victoria Place, recreational land and Parramatta River beyond.

3. Site Condition and Environment

The site condition based on published information and site observations made during fieldwork are presented in Table 3.1. At the time of the conducted works, the site consisted of a brick building with a workshop and office areas. The workshop area comprised the sites south-eastern portion, and contained a slipway for boats, internal workshop and vehicle parking area. A sealed driveway and parking area were present to the north-west of the site building, and a concrete sealed area providing wharf access to the north-east. Site features are described on Figure 2 of this report.

Title	Details
Topography and Drainage	The majority of the site area was generally flat at approximately 2m Australian Height datum (AHD), situated below Victoria Place (at approximately 8m AHD). External site areas appeared to fall slightly to the east. The site was separated from Victoria Place, to the south-west, by a 6m high retaining wall. The driveway to the north-west extended from site level up to Victoria Place. Grated stormwater drains were present across the site, and were observed in the workshop area. Surface water falling on external site areas and the driveway is expected to be captured within these drains and flow into the stormwater system, which discharges to Parramatta River.
Boundary Condition	The site was accessible by a driveway to the north-west. Southern site boundaries comprised fencing and/or retaining walls. No fencing was present to the north/east of site, which fronts Parramatta River.
Vegetation	The site was sealed. No relevant vegetation was observed, although brick planter boxes were present on the wharf area.
Presence of Drums, Wastes and Fill Materials	It is understood that chemicals are stored onsite. The site Hazardous Materials list is provided as Appendix K. No stockpiled fill materials were observed, although it is likely that portions of the site are built on fill materials (including areas of presumed reclaimed land). Section 4 and Section 11 details the location and extent of fill material present on site.
Odours	No odours were noted during site works.
Condition of Buildings & Roads	Site buildings and sealed areas were observed to be in a maintained condition.
Quality of Surface Water	No sheens or odours were noted for pooled surface water observed at the site, which entered via the site driveway due to rainfall.
Relevant Local Sensitive Environments	 Sensitive human receptors associated with the site are: Current site occupants (staff and customers); Future site occupants i.e. staff and visitors; Construction and maintenance workers during upgrade works; Residential neighbours. The nearest ecological receptor is Parramatta River, to the immediate north east of site.

Table 3.1: General Site Conditions

4. Geology, Hydrogeology and Hydrology

The geology, hydrogeology and hydrology of the site are summarised in Table 4.1 using available information as presented in the Enviro-Screen Report (Appendix D). Background sediment data was provided by Marine Pollution Research Pty Ltd (Appendix L), which was obtained as part of their investigation of sediments in channels likely to be used by vessels after realignment of the marina.

Title	Details
Geology Map Conditions	Review of the 1:100 000 Geological Series 9030 (1991) indicated that the site is underlain by Mesozoic Hawkesbury Sandstone (Triassic), which is characterised by medium to coarse grained quartz sandstone, very minor shale and laminite lenses.
Soil Map Conditions	Review of the regional soil map (Appendix D) indicates that the site lies within the Lambert (Erosional) soil landscape group. The Lambert soil landscape group is characterised by shallow (<50 cm) discontinuous Earthy Sands (Uc5.11, Uc5.22) and Yellow Earths (Gn2.2) on crests and insides of benches; shallow (<20 cm) Siliceous Sands/Lithosols (Uc1.2) on leading edges; shallow to moderately deep (<150 cm) Leached Sands (Uc2.21), Grey Earths (Gn2.81) and Gleyed Podzolic Soils (Dg4.21) in poorly drained areas; localised Yellow Podzolic Soils (Dy4.1, Dy5.2) associated with shale lenses.
	Limitations: very high soil erosion hazard, rock outcrop, seasonally perched watertables, shallow, highly permeable soil, very low soil fertility.
Acid Sulfate Soils (ASS)	A review of the ASS Risk Maps (Appendix D) indicates that the site is located on Class 2 and 5 ASS. A review of CSIROs ASRIS Atlas of Australian Sulfate Soils map indicated that ASS has a 'high probability of occurrence' on site. Site observations indicated that site soils comprised clayey gravel/sand fill overlaying shallow sandstone, with no sulfurous odours noted. Based on these observations, acid
	sulfate soils are not anticipated within site development areas.
Fill Materials	Information provided by the site manager stated that fill material exists beneath the external wharf area to the north-east of the site building, which is outside of the proposed development area. Historical site aerials indicate that initial land reclamation likely took place at the site prior to 1930 (Section 5).
Summary of Registered Bores	A search of the Department of Primary Industries (DPI) database revealed no ground water wells within 1km of the site. Two registered groundwater bores within 2km of the site, although both are located on the opposite (northern) side of Parramatta River.
Depth to Groundwater	Observed standing water levels at the site from the investigation indicate that the depth to groundwater ranges from approximately 0.4m below ground surface (bgs) (south-western portion) to 0.9m bgs (north-eastern portion). This gradient is generally consistent with observed topography in the area, which falls towards Parramatta River. Groundwater is expected to flow predominantly at the interface between the soil layer and underlying bedrock and be influenced by surface water recharge from rainfall events.
Direction of Groundwater Flow	Based on topographical and geological features, it is expected that groundwater beneath the site would flow in a north easterly direction towards Parramatta River, which is consistent with observed standing water levels (SWL) in the monitoring wells.
Nearest Water Body	The nearest water body is Parramatta River, located to the immediate adjacent to the site, forming the north/east boundary.
Background Sediment Data	Sediment data collected from Parramatta River, proximate to the site, by Marine Pollution Research Pty Ltd (Appendix L) indicated two exceedances of ANZECC Guidance Values and Sediment Quality Guidelines (SQG – High). A lead exceedance of 240 mg/kg was reported approximately 20m north-east of the site's slipway, and a zinc

Table 4.1: Subsurface Conditions

Title	Details
	exceedance of 436 mg/kg was reported approximately 50m east of the slipway. The adopted criteria for lead and zinc in sediment is 220 mg/kg and 410 mg/kg, respectively (Section 10).

5. Site History

Site history is summarised in Table 5.1 using available information as presented in the Enviro-Screen Report (Appendix D):

Source	Details
EPA Records	The site is not listed on the EPA's register of regulated or notified sites under the Protection of the Environment Operations Act (POEO) public register.
	A search of the EPA's register of sites notified to the EPA was completed and identified one property located within 1km of the site: the former Sydney Wiremills (BHP) site, located 944m to the south-west of site. The record states that regulation under the CLM Act is not required for this site. Additionally, this site is not considered a potential contamination risk as it is located in Chiswick, which is beyond Drummoyne Bay on the other side of the water body within a separate catchment.
	There were no identified premises within 500m of the site that hold a licence under the POEO Act (1997).
Dangerous Goods Records	A review of the Dangerous Goods Records for the site indicates that two underground tanks, of ~2,300 L in volume, were decommissioned and filled with sand in 1994, and removed from the site in 2004. The tanks had previously stored petrol. There is a schematic drawing that indicates the tanks were adjacent to Victoria Place, with two pipelines running beneath the boatshed to the jetty. The Dangerous Goods Record indicates the vent lines were filled with cement in 1996, and that the dip and bowser lines had previously been removed. Dangerous goods search documentation is provided in Appendix J.
	A review of the chemical inventory for other chemicals stored onsite was not performed.
Aerial Photographs	Current and historic aerial photographs were reviewed to identify any major land use changes both on and adjacent to the site.
	Findings from the aerial photograph review are summarised as follows:
	• 1930 : Although difficult to distinguish due to low photograph resolution, the site appeared developed and likely to partially comprise reclaimed land. The likely reclaimed land extended onto property to the south-east of site. Property to the immediate north/west appeared undeveloped, with buildings visible beyond. Property to the south/east appeared commercial/industrial and/or residential in nature, with property further to the south-east residential, and many wharfs and boats present. Parramatta River was present to the immediate north/east. Victoria Place was present to the south-west, with what appeared rural residential property beyond. A bridge was present extending from the headland to the north-west of site across Parramatta River.
	• 1943 : The eastern site portion appeared to comprise foreshore/estuarine habitat, with a wharf visible. A building was present in the sites south western corner. The sites south/eastern corner appeared undeveloped with various items/small structures visible. Disturbed ground surface was apparent in along the sites southern boundary, adjacent to Victoria Place. Although removed from the site, the reclaimed land previously visible still extended to the south/east and appeared to comprise garden areas. Land to the north-west appeared undeveloped with vegetation present. Additional residential development was apparent to the south east and south of site.
	• 1961: The site appeared similar to the current layout, with a building in the south- western corner, smaller building in the north eastern corner (with potential slipway). Small structures and boats were visible in the northern portion of the site, with what appeared to be a marina extending beyond. Property to the south and east appeared generally residential. Areas to the west and north west were now predominantly parkland

Table 5.1: Summary of Site History

	NULP
Source	Details
Source	
	• 1965: The site appeared similar to the previous photograph. The slipway was visible. The sites eastern portion appeared grassed with a walking path visible. Land to the north west of site appeared undeveloped, with a road visible, likely providing vehicle access to the site. Residential units had been developed to the south-west of site, beyond Victoria Place, which had been widened. It appeared that the bridge to the north-west of site was being decommissioned as a section had been removed. Parkland area to the north west was reduced and a large building constructed to the south. The new Gladesville Bridge is visible.
	• 1971: The site appears to be reasonably similar to the previous photo with the marina area extended. The pontoon to the east of site had been removed. The bridge had been removed from the headland to the north-west of site, as had a proximate wharf.
	• 1975: The site appeared generally similar to the previous photograph, with disturbed ground surface apparent in the eastern portion.
	• 1986: The driveway to the north of site was more visible, and the slipway visibly comprised concrete (difficult to tell on previous photographs). Various items/small structures were visible on the ground surface in the sites eastern portion, which appeared unsealed.
	• 1991: The eastern site portion appeared to have been concreted, and the marina had been reconstructed extending from the sites eastern edge. Various items, vehicles and boats were visible on the ground surface.
	• 2002: The site appeared generally similar to the previous photograph, although additional items were visible on the ground surface in the eastern portion, and the marina had been extended further.
	• 2004: The roof of the main site building appeared to have been extended to cover the smaller building in the south. Less items were visible on the ground surface in the eastern portion, with several boats present. Development was visible to the immediate south of site.
	• 2007: The site and surrounds appeared generally similar to the previous photograph.
	• 2010: The site appeared generally similar to the previous photograph, with less items stored on the ground surface.
	• 2014 : The site and surrounds appeared generally similar to the previous photograph, although an extension had been built to the east of the site building.
	• 2017: The site and surrounds appeared generally similar to the previous photograph.
	• 2019: The site and surrounds appeared generally similar to the previous photograph.
Dry Cleaners, Motor Garages and Service Stations	The site is used for a marina, boat repairs and associated administration.
	The site is not listed as having been a dry cleaner.
Potentially Contaminating Sites	A search for sites that may represent a potential contamination source was completed for premises within 200m of the site. The search identified that the subject site is currently used for boat repairs and boat dealer imports. Identified surrounding sites that may represent a risk of potential contamination include:
	• Drummoyne Auto Care (repair facility), located ~60m south-east of site. It is noted that this facility no longer exists, and is therefore not considered a contamination risk to the site.
	• It is noted that the five sites detailed as 'Motor Engineers and Repairs' or 'Motor Cars, Lorries and Garages' in the enviro-screen report are not considered a contamination risk to the site, as the listed addresses are located several kms to the north of site on Victoria Road, beyond Parramatta River.
	The site is not listed as within the area of a PFAS investigation program.
Land Title Records	A review of the land title records was not completed for the site.
Council Records	A review of the Section 10.7(2) and (5) planning certificate was not completed for the site.

Source	Details				
Inventory of Chemicals and Waste	A 'Hazardous Materials List' for the site was provided by the site manager (Appendix K), which includes antifouling chemicals, thinners, primers, and various other chemicals including fuels.				
	A waste inventory was not requested for review.				
Asbestos Containing Material (ACM) Documentation	ACM survey documentation was not requested as part of the investigation.				
Anecdotal evidence	A conversation with the site manager was conducted, with the following noted:				
	• The former UST in the site's south-western portion was removed several years ago (was not sure of year).				
	• Up to 200L of fuel is stored onsite in approved 20L containers inside a fuel locker for workboat refuelling.				
Description of Manufacturing / Industrial Processes and	The site operates as a boat repair facility, with a range of mechanical and maintenance activities taking place inside the workshop, and on the slipway (which contains a hydraulic chain system to retrieve boats from the water).				
Location	No information was available regarding process streams from the mechanical workshop.				
Product Spill and Loss History:	No documentation regarding spill or product loss was available for review. No evidence of staining of the ground surface was observed at the time of the inspection.				
Discharge to Land, Air and Water	No documentation regarding discharge to land, air and water was available for review.				
Complaint History	No documentation regarding complaint history was available for review.				
Sewer and Service Plans	No service plans were reviewed as part of this investigation.				
Summary of Previous Land Use & Chronological List	Historical aerial photographs indicate that the site's eastern portion comprised reclaimed land in 1930, which was mostly removed by 1943, then reclaimed again by 1961. A site building and potential slip way are visible in site photographs dating back to 1961.				
Integrity Assessment	Reviewed sources of information were in general agreement. This degree of consistency suggests that the historical assessment described above has an appropriate level of accuracy. Supporting records are included in Appendix I.				

6. Conceptual Site Model

6.1 Known or Potential Sources of Contamination

Table 6.1 presents a summary of potentially contaminating activities that have occurred at the site or in the surrounding area, and associated contaminants of potential concern (COPC):

Table 6.1 Summary of Potentially Contaminating Activities

Activity	Potential Contaminants
Filling of reclaimed land and uncontrolled site fill	Metals (cadmium, arsenic, copper, lead, mercury, zinc, nickel, chromium), total recoverable hydrocarbons (TRHs), polycyclic aromatic hydrocarbons (PAHs), benzene, toluene, ethylbenzene, xylene (BTEX), and asbestos.
Boat repair works	Metals, TRH/BTEX, PAH and Organotins (Tributyltin - TBT).
Former UST tankpit	TRH, BTEX, Lead

6.2 Potentially Affected Media

Given the nature of the potentially contaminating activities outlined in Table 6.1, the following media could be potentially affected:

- Site fill and natural soils.
- Fill used for reclaimed land.
- Groundwater beneath the site.
- Foreshore sediment at, and down-gradient of, the site.

6.3 Potential Human and Ecological Receptors

Potential human receptors may include:

- Current site occupants.
- Future site workers and occupants.
- Neighbouring site users.

Potential ecological receptors may include:

• Parramatta River.

6.4 Potential Exposure Pathways

It is proposed that the property will remain in use as a marina and offices. Boat repair facilities will be discontinued. Information made available prior to this investigation indicates that the concrete cap will remain intact across the site. Based on this, potential direct exposure to soil, sediment and/or groundwater during site redevelopment is likely limited to accumulated sediments in the slipway.

Potential exposure pathways are detailed in the following subsections.

6.4.1 Human Receptors

Based on the proposed development scenario, potential exposure pathways of identified COPC to human receptors include:

- Current site occupants: Nil site covered in building and hardstand
- Future site occupants: dermal contact and incidental ingestion of sediments during use of slipway for small boat launching.
- **Construction site workers**: Potential inhalation of dust, dermal contact / incidental ingestion of soil, sediment and groundwater (excavations, slipway, foreshore).
- Neighbouring site users: Potential inhalation of dust during demolition, excavation and stockpiling of soil.

6.4.2 Flora and Aquatic Ecosystem

Potential soil impacts present a low risk to flora given that the site is generally clear of vegetation (Section 3). Where vegetation occurs (potted/bed plants), flora appears not to be unduly affected by current site conditions.

Site layout indicates potential for surface runoff and groundwater from the site to enter Parramatta River, potentially impacting sediment and river flora / fauna.

7. Data Quality Objectives

The data quality objectives (DQO) process is a systematic planning tool based on the scientific method for establishing criteria for data quality and for developing data collection designs. The DQOs define the experimental process required to test a hypothesis. By using the DQO process to plan the investigation effort, the relevant parties can improve the effectiveness, efficiency and defensibility of a decision in a resource and cost-effective manner.

Data quality objectives (DQOs) developed for the validation assessment are discussed in the following sections.

7.1 State the Problem

Investigation of contamination conditions at the site was required to support submission of a development application to Council. Available information indicates that site excavation is not proposed during redevelopment.

7.2 Identify the Decision

The following decision was required to be made during the investigation:

- Do chemical concentrations in analysed soil, sediment or groundwater samples exceed the adopted human health criteria?
- Do chemical concentrations in analysed sediment or groundwater samples exceed the adopted ecological criteria?
- Do identified contaminant conditions at the site indicate requirement for any further assessment, remediation or management, with respect to the proposed redevelopment?

7.3 Identified Inputs to the Decision

Inputs in the decision are:

- Site setting and history.
- Physical observations and photographs.
- Soil and sediment analytical data from targeted sampling locations.
- Groundwater analytical data from installed wells at the site.
- Groundwater levels and measurement of water quality parameters within wells.

7.4 Define the Study Boundaries

The site comprised the area detailed in Table 2.1, with the approximate area shown on Figure 2. The slipway has been considered as a component of this investigation, noting that slipway portions extend beyond the site boundary into Parramatta River.

The maximum vertical extent of the investigation was 2m below ground surface (bgs), due to refusal on sandstone bedrock.

Seasonality was not considered relevant to the investigation.

7.5 Develop a Decision Rule

The decision rules adopted to answer the decisions outlined in Section 7.2 are summarised in Table 7.1:

Table 7.1: Decision Rules

No.	Decision to be Made	Decision Rule
1	Do chemical concentrations in analysed soil, sediment or groundwater samples exceed the adopted human health criteria?	If contaminant concentrations are compliant with adopted human health criteria, there is considered to be a low human health risk at the site.
2	Do chemical concentrations in analysed sediment or groundwater samples exceed the adopted ecological criteria?	If contaminant concentrations are compliant with adopted ecological criteria, there is considered to be a low ecological risk at the site.
3	Do identified contaminant conditions at the site indicate requirement for any further assessment, remediation or management, with respect to the proposed redevelopment?	If contaminant concentrations in soil, sediment and groundwater are compliant with the adopted human health and ecological criteria, then further assessment, remediation or management is not considered necessary.

7.6 Specify Limits of Decision Error

This step is to establish the decision maker's tolerable limits on decision errors, which are used to establish performance goals for limiting uncertainty in the data. Data generated during this project must be appropriate to allow decisions to be made with confidence.

Specific limits for this project have been adopted in accordance with the appropriate guidance from the NSW EPA, NEPC (2013), appropriate indicators of data quality (DQIs used to assess QA/QC) and standard procedures for field sampling and handling.

To assess the usability of the data prior to making decisions, the data was assessed against predetermined DQIs established for the project as discussed below in relation to precision, accuracy, representativeness, comparability, and completeness and sensitivity (PARCCS parameters). The acceptable limit on decision error is 95% compliance with DQIs.

The DQIs and data assessment criteria are summarised in Table 8.2.

Table 7.2: Summary of Quality Assurance/Quality Control

Data Quality Objectives	Frequency	Data Quality Indicator
Precision		
Blind duplicates (intra laboratory) for primary COC only	1/20 Samples	<50% RPD
Blind duplicates (inter laboratory) for primary COC only	1/20 Samples	<50% RPD
Laboratory duplicate	1/20 Samples	<50% RPD
Accuracy		
Surrogate spikes	All organic samples	70-130%

Data Quality Objectives	Frequency	Data Quality Indicator
Laboratory control samples	1 per lab batch	70-130%
Matrix spikes	1 per lab batch	70-130%
Representativeness		
Sampling appropriate for media and analytes	-	Yes
Samples extracted and analysed within holding times.	-	Organics (7-14 days), inorganics (6 months)
Trip spike (for volatiles)	1 per sample batch	60-140%R for organics
Trip blank	1 per sample batch	<lor< td=""></lor<>
Rinsate	Not required as all sampling equipment was disposable	NA
Comparability		
Standard operating procedures for sample collection & handling	All samples	Yes
Standard analytical methods used for all analyses	All samples	Yes
Consistent field conditions, sampling staff and laboratory analysis	All samples	Yes
Limits of reporting appropriate and consistent	All samples	Yes
Completeness		
Sample description and COCs completed and appropriate	All samples	Yes
Appropriate documentation	All samples	Yes
Satisfactory frequency and result for QC samples	All samples	Yes
Data from critical samples is considered valid	-	Critical samples valid
Sensitivity		
Analytical methods and limits of recovery appropriate for media and adopted site assessment criteria	-	LOR<= Site assessment criteria

7.7 Optimise the Design for Obtaining Data

Soil and sediment sampling was completed at limited locations targeting areas of identified contamination risk, including the former UST tank pit and slipway, and to provide general coverage in accordance with the investigation scope.

The positioning of the groundwater monitoring wells were selected to assess the quality of groundwater onsite, with locations down-gradient of the slipway/workshop and inside the former UST tank pit. It is noted that shallow bedrock prevented well installation in certain site areas and the installation of an upgradient well.

Sampling locations and monitoring wells are shown in Figure 3.

8. Sampling and Analysis Plan

The rationale behind the sampling and analysis plan is presented in the sections below.

8.1 Sampling Pattern

The investigation completed at the site was targeted in nature, which complies with the requirements of the NSW EPA Sampling Design Guidelines (1995) given that only portions of the site will be subject to redevelopment.

Justification for sampling locations is detailed in Table 8.1.

Justification
Immediately down-gradient of slipway / workshop, suspected reclaimed land. Slipway operations.
Former UST tank pit, proximate to workshop.
Up-gradient of suspected reclaimed land / cross-gradient from workshop / slipway.
Down-gradient location, possible reclaimed land.
Vehicle parking area.
Down-gradient / adjoining slipway.
Cove to the immediate north of site (within Parramatta River).

Table 8.1: Sampling Justification

Sampling locations are displayed in Figure 2.

8.2 Soil and Sediment Sampling Methodology

Intrusive sampling for the investigation was carried out using a drill rig fitted with a solid flight auger:

- Ground conditions were logged with detail on stratigraphy, discolouration, staining, odours, moisture or other indicators of contamination.
- Soil samples were taken with clean disposable nitrile gloves directly from the auger flights with care taken to collect soil that had not come into contact with the auger stem. Samples were then placed in laboratory-supplied sample containers with a Teflon sealed lid.

Sediment samples were collected using a sampling pole, with an attachment for single-use laboratorysupplied sample containers.

8.3 Groundwater Installation and Sampling Methodology

Each groundwater well was constructed with lengths of 50 mm diameter screw threaded casing. A length of machine slotted casing was positioned to intercept groundwater, and to extend above the water table, regardless of tide. Lengths of solid casing extended to the surface. The well annulus was backfilled with gravel pack to above the screened interval, and a bentonite seal placed over the gravel pack. The remaining well void was backfilled with soil cuttings from the drilling.

Installation of a monitoring well at BH03 was not possible due to shallow bedrock.

Groundwater wells were developed after installation through the use of a stainless-steel bailer, and then left to equilibrate.

Sampling was conducted nine days later on 13 June 2019 using a peristaltic pump:

- Standing water levels and total well depths were measured using an interface probe.
- Water quality parameters were recorded, including pH, redox potential (Eh), electrical conductivity, dissolved oxygen and temperature (Appendix I).
- Groundwater samples were placed into laboratory supplied containers.
- All metal samples were field filtered.

A ground elevation survey of installed wells was not completed, as a minimum of three well locations are required to accurately determine groundwater flow direction using survey data. It would be Zoic's observation that groundwater would flow towards the Parramatta River

Borelogs are included as Appendix H.

8.4 Sample Handling

Containers were labelled with the sample number, project number and date. Samples were placed in an ice-cooled Esky and despatched under a chain of custody. Samples were transported to the primary laboratory, Envirolab Services in Sydney, after the completion of sampling activities, within applicable holding times. Inter-laboratory testing of triplicate samples was conducted by Eurofins in Sydney.

8.5 Analytical Schedule

Selected soil samples were analysed for heavy metals, TRH, BTEX, PAH, Organotins (TBT) and asbestos.

Sediment samples were analysed for heavy metals, TRH, BTEX, PAH and Organotins (TBT).

Groundwater samples were analysed for heavy metals, TRH, BTEX and PAH.

8.6 Field QA/QC Sampling

The methodology for obtaining QA/QC samples was conducted as follows:

Duplicate Samples

In accordance with NEPM (2013), at least 5% of soil samples and groundwater samples were duplicates collected in the field for analysis at the primary laboratory. They were collected from the same sampling point and divided into two separate and unrelated sample containers for analysis at the same laboratory (intra-laboratory precision).

- Soil duplicate: DUP-1 = BH02 (1.9)
- Groundwater duplicate: DUP-2 = MW02

Triplicate Split Samples

At least 5% of soil samples and groundwater samples were duplicates collected in the field for analysis at the secondary laboratory. They were collected from the same sampling point and divided into two separate and unrelated sample containers for analysis at the secondary laboratory (inter-laboratory precision).

• Soil triplicate: TRIP-1 = BH02 (1.9)

• Groundwater triplicate: TRIP-2 = MW02

9. Evaluation of QA/QC

Field QA/QC

Soil samples were taken with clean disposable nitrile gloves directly from the auger flights with care taken to collect soil that had not come in contact with the auger stem. Samples were then placed in laboratory-supplied sample containers with Teflon sealed lid.

Sediment samples were scooped directly into the sample bottles, which were laboratory-supplied, sterile and closed with a sealed Teflon lid. The sampling pole used to hold the sampling bottle was washed free of sediment between sampling locations.

Groundwater samples were collected using clean dedicated tubing at each well to prevent any potential cross contamination and were placed into laboratory supplied containers.

The QA/QC results for soil and groundwater duplicate (intra-laboratory) and triplicate (inter-laboratory) samples are summarised below with results presented in Appendix F.

Based on the information referenced above, the field data is of an acceptable quality to achieve the objectives of this study, with the following comments:

- Soil Relative Percent Differences (RPDs) calculated for inter-laboratory and intra-laboratory samples were generally within the accepted range, with the exception of RPDs for some PAHs, hydrocarbons and heavy metals, likely indicative of the heterogenous composition of fill materials. RPDs were also exceeded for benzene, ethylbenzene, xylene and naphthalene due to differing laboratory LORs.
- Groundwater RPDs calculated for inter-laboratory and intra-laboratory samples were within the accepted range, with the exception of RPDs for PAHs and some heavy metals, potentially indicative of uneven distribution of contaminants within the water column. RPDs were also exceeded for naphthalene and cadmium due to differing laboratory LORs.

Laboratory QA/QC

Samples were received and analysed by the primary and secondary laboratories with colling undertaken and within sample holding times.

Detailed QA/QC results are presented on the laboratory testing certificates presented in Appendix C and summarised in Table G-1 in Appendix G.

The laboratory QA/QC procedures indicate the data is accurate, precise and therefore suitable to rely on, with the following comments:

- a. Relative Percent Differences (RPDs) calculated for inter-laboratory and intra-laboratory samples for chromium, copper, nickel and zinc are indicative of heterogeneous composition within the fill material.
- b. Relative Percent Differences (RPDs) calculated for inter-laboratory samples for benzo(a)pyrene are also indicative of heterogenous composition within the fill material;
- c. There was some minor variation in TRH concentrations between the primary sample (MW02) and its duplicate (Trip-2), but all results were well below the applicable criteria, indicating the variation is acceptable.

10. Site Assessment Criteria

The criteria below have been developed based on continued use of the site for commercial / industrial land use (i.e. marina).

10.1 Soil Criteria

Soil analytical results were assessed against the Australian guidelines listed below, with adopted soil criteria summarised below in Table 10.1.

- National Environment Protection Measure (NEPM) (2013) Health Investigation Levels: HIL D (commercial / industrial).
- NEPM (2013) Health Screening Levels: HSL D (commercial / industrial) coarse soils 0 <1m (conservative). The HSLs apply to vapour intrusion for TRH (F1 and F2 Fractions), BTEX, and naphthalene.

NEPC (2013) ecological criteria for soil was not considered as the site is covered by hardstand, and vegetation on site is largely absent. This will be retained within the proposed development.

In the absence of Australian guidance for tributyl tin in soil, a number of guidance from other jurisdictions has been considered. The Region 9 US EPA Regional Screening Levels (RSL) for commercial/industrial exposure to soil is considered appropriate for the proposed site works and ongoing commercial/industrial landuse (with concrete hardstand across the site), in the absence of published Australian or New South Wales-specific guidance. The relevant US EPA RSL value for tributyl tin in soil is 2.5 mg/kg.

NEPM (2013) Soil Site Suitability Criteria	HIL D – Commercial / Industrial	Soil HSL D Commercial / Industrial (vapour intrusion) for Sand Soil (mg/kg)				Management US EPA RSL ² Limits ¹
	(mg/kg)	0 to <1m		1 to <2m	2 to <4m	4m+
F1	-	260	700	370	630	NL
F2	-	NL	1000	NL	NL	NL
F3 (>C16-C34)	-	-	3500	-	-	-
F4 (>C34-C40)	-	-	10000	-	-	-
Benzene	-	3	-	3	3	3
Toluene	-	NL	-	NL	NL	NL
Ethylbenzene	-	NL	-	NL	NL	NL
Xylenes (Total)	-	230	-	NL	NL	NL
Naphthalene	-	NL	-	NL	NL	NL
Benzo (a) Pyrene	40	-	-	-	-	-
Total PAHs	4000	-	-	-	-	-
Arsenic	3000	-	-	-	-	-
Cadmium	900	-	_	_	-	-

Table 10.1: Soil Criteria

NEPM (2013) Soil Site Suitability Criteria	HIL D – Commercial / Industrial (mg/kg)	Soil HSL D Commercial / Industrial (vapour intrusion) for Sand Soil (mg/kg)				Management Limits ¹	US EPA RSL ²
		0 to <1m		1 to <2m	2 to <4m	4m+	
Chromium (VI)	3600	-	-	-	-	-	
Copper	240000	-	-	-	-	-	
Lead	1500	-	-	-	-	-	
Mercury	730	-	-	-	-	-	
Nickel	6000	-	-	-	-	-	
Zinc	400000	-	-	-	-	-	
Tributyltin							2.5
Asbestos ³	0.01% ³	-	-	-	-	-	-

1. Management Limits – Commercial / Industrial (mg/kg) for Coarse Soil

2. US EPA Regional Screening Level

3. Asbestos was screened for absence/presence due to poor retrieval of saturated soils. Any presence would warrant quantification, with limits as per Table 8.1.

10.2 Sediment Criteria

Sediment analytical results were assessed against criteria provided in the ANZECC / ARMCANZ (2013) Sediment Quality Guidelines, with the adopted sediment criteria summarised below in Tables 10.2. Given the Parramatta River estuary has a history of industrial use, and the slipway itself is used for industrial cleaning and maintenance activities, it is reasonable to refer to the Sediment Quality Guideline – High (SDQ-H) for the site.

Table 10.2. Sediment Criteria

ANZECC/ARMCANZ Sediment Quality Guidelines 2013	Guideline Value (mg/kg)	SQG – High (mg/kg)
TPH*	280	550
Total PAH*	10000	50000
Arsenic	20	70
Cadmium	1.5	10
Chromium (VI)	80	370
Copper	65	270
Lead	50	220
Mercury	0.15	1
Nickel	21	52
Zinc	200	410
Tributyltin**	9	70

*Mg/kg dry weight, 1%TOC ** µg Sn/kg dry weight, 1% TOC

10.3 Groundwater Criteria

Groundwater analytical results were assessed against the guidelines listed below, with adopted groundwater criteria summarised in Table 10.3.

• NEPM (2013) Groundwater Investigation Levels (GILs) for Marine Waters. Note that the values are consistent with ANZG (2018) Australian and New Zealand Guidelines for Fresh and Marine Water Quality.

It is noted that NEPM (2013) Groundwater HSL criteria is not relevant to the site, as groundwater is shallower that 2m bgs.

Table 10.3. Groundwater Criteria

NEPM (2013) Groundwater Site Suitability Criteria	GILs for Marine Waters (µg/L)
Heavy Metals	
Arsenic	13*
Cadmium	0.7
Chromium (VI)	4.4
Copper	1.3
Lead	4.4
Mercury	0.1
Nickel	7
Zinc	15
Cyanide (as un-ionised Cn)	4
PAHs	
Benzo (a) Pyrene	0.1**
BTEXN & TRH	
Benzene	500
Toluene	180**
Ethylbenzene	80**
Xylenes (Total)	350/75/200***
Naphthalene	50
Fl	-
F2	-

*Fresh Waters Investigation Level used in absence of Marine Investigation Level. **Low Reliability value used in absence of Marine/Fresh Waters Investigation Levels. *** o-xylene / m-Xylene / p-Xylene

10.4 Other Assessment Criteria

Where no relevant Australia criterion is available, the limit of reporting (LOR) will be adopted as a preliminary screening criterion. Where the concentration exceeds the LOR, reference criteria will be selected from national and international guidance as appropriate to determine the significance or otherwise of the detected analyte.

11. Field Observations

Zoic conducted site investigation of soil on 4 June 2019, and sediments and groundwater on 13 June 2019. The site location is shown on Figure 1, and sample locations are provided on Figure 3. Borelogs are included as Appendix H, and groundwater data sheets as Appendix I.

Observations made during the environmental investigation are detailed in the following subsections.

11.1 General Observations

General observations made during fieldworks are:

- Surface conditions onsite generally consisted of concrete storage/parking space, a workshop/office building, a concrete wharf area and a slip-way. The concrete hardstand was generally observed to be in good condition, although cracks were noted in areas.
- Works areas of the slipway could not be inspected due to access limitations from site works / structures.
- From below the concrete surface, encountered soils generally comprised brown to dark grey clayey sand to gravel fill material, with inclusions of sandstone cobbles (BH01, BH03) and wood (BH04).
- Fill material was underlain by sandstone bedrock, ranging from 0.2m bgs (BH03) to 2.0m bgs (BH02).
- Soils became wet immediately beneath the concrete at BH03, at 0.5m bgs at BH01, and at 0.9m bgs at BH02.
- Site observations generally indicated groundwater running through the fill / soil layer overlying the sandstone bedrock.
- No potential asbestos containing material (including fibre cement fragments), staining or odours were observed during sampling works.
- Zoic was supplied an inventory of chemicals held on site by the client. The chemical storage area was noted on site, although no inspection or audit of the chemical storage area was completed;
- Site vegetation was limited to pot plants and a small garden bed.
- Collected sediment samples were observed to comprise fine to medium grained, brown to dark-grey silty sand, with inclusions of gravel and shell grit. Paint chips and other small debris from boat cleaning activity was noted in the slipway.
- Accumulated sediment was observed in areas of the slipway, overlying concrete.

11.2 Groundwater Observations

Boreholes BH01 and BH02 were converted to groundwater monitoring wells (MW01 and MW02) and developed using a stainless steel bailer following installation. A minimum of three times well volume was bailed from each well during development.

Groundwater Field Chemistry Parameters are presented in Table 11.1. Calibration certificates are provided in Appendix E.

Well ID	Date	Temp (°C)	pH	Redox (mV)	DO (ppm)	Cond. (mS/cm)	Comments
MW01	13.06.19	19.2	7.26	178.1	7.02	48.61	Brown-grey, slightly turbidity, no odour, no sheen.
MW02	13.06.19	17.2	11.24	-295.0	8.94	1.22	As above.

Table 11.1 Groundwater Field Chemistry Parameters (13 June 2019)

Field observations of groundwater encountered during groundwater sampling activities include:

- Standing water levels were 0.89m bgs at MW01 and 0.37m bgs at MW02, noting that a slight topographical decline was observed towards the north-east;
- Strongly alkaline conditions at borehole MW02, and slightly alkaline conditions at borehole MW01;
- Strongly reducing conditions at borehole MW02, and oxidising conditions at borehole MW01;
- Conditions indicative of marine waters (highly saline) at borehole MW01;
- Conditions indicative of brackish waters at borehole MW02; and
- No phase separated hydrocarbon (PSH) or hydrocarbon sheen was observed during groundwater sampling.

Copies of groundwater field observations sheets are provided in Appendix I.

12. Laboratory Results

12.1 Soil

Soil samples were submitted for analysis for heavy metals, TRH, BTEX, PAH, Organotins (TBT) and asbestos.

The soil analytical results indicated concentrations of contaminants of potential concern (COPC) were below the adopted human health criteria for all samples analysed.

Four soil samples were analysed for asbestos in soil, with all results reported below the laboratory LOR.

Data summary tables are provided in Appendix B.

12.2 Sediment

Sediment samples were submitted for analysis of heavy metals, TRH, BTEX, PAH and Organotins (TBT).

Analytical results for sediment indicate a number of COPC above both the ANZECC Guidance Values and the adopted Sediment Quality Guidelines (SQG – High).

The following exceedances of Guidance Values and SPGs were reported:

- SD-1 for TPH, copper, lead, zinc and TBT.
- SD-2 for TPH, copper, lead, mercury, zinc and TBT.
- SD-3 for copper, mercury and TBT.

The following exceedances of Guidance Values only were reported:

- SD-1 for nickel and mercury.
- SD-2 for chromium.
- SD-3 for lead and zinc.

Data summary tables are provided in Appendix B, and summary of exceedances shown on Figure 4.

12.3 Groundwater

Groundwater samples were submitted for analysis of heavy metals, TRH, BTEX and PAH.

All groundwater samples reported analytical results below the adopted ecological criteria, with the exception of the following:

- MW01 for copper and zinc.
- MW02 for chromium, copper and zinc.

NEPM (2013) Groundwater HSL criteria is not considered relevant to the site due to shallow groundwater. Reported concentrations of TRH/BTEX compounds in the groundwater samples analysed were noted, however, at levels indicating a low risk of vapour intrusion / exposure, particularly as the site is covered by a concrete hardstand.

Data summary tables are provided in Appendix B.

13. Discussion

13.1 Human Health Considerations

Although the adopted criteria for sediments in this assessment are ecological in nature, reported concentrations of petroleum hydrocarbons (TPH), heavy metals (copper, nickel, lead, mercury and zinc), and organotins (TBT) in slipway sediments indicate concentrations that may pose potential for human health exposure risk. Any works / activities in slipway areas will therefore require management to prevent future exposure to impacted soil and sediment. Available information suggests that associated activities proposed primarily relate to amendments to surface structures within the slipway (site workers), and ongoing use of the slipway areas (site workers / occupants). Consideration will additionally be required in areas where accumulated sediment in the slipway was noted (based on site observations).

Analytical data indicates that there is no human health risk posed by concentrations of chemicals of concern in soil or groundwater observed at the site, noting that sampling was not achieved beneath the slipway/workshop as it was operational. However, the potential risks associated with the presence of any contaminants under the slipway in the future will still need to be assessed. Reported concentrations of hydrocarbon compounds in groundwater indicate a low risk of vapour intrusion / exposure, which is supported by the site being covered with concrete hardstand.

13.2 Ecological Considerations

Site assessment indicates that foreshore sediments adjoining the site slipway are impacted by a number of chemicals of concern, including petroleum hydrocarbons, heavy metals and organotins (TBT). Reported sediment concentrations of TPH (SD-2), copper (SD-1, SD-2), lead (SD-1), zinc (SD-1, SD-2) and TBT (SD-1, SD-2, SD-3) can be considered hotspots, as they are over 250% greater than the adopted criteria. SD-3 indicates that the current and historical slipway has impacted site sediments in the immediate vicinity of the site. This tends to be supported by sediment data provided by Marine Pollution Research Pty Ltd (Appendix L), which indicated exceedances of the adopted site sediment criteria in Parramatta River for lead (approximately 20m north-east of the site's slipway) and zinc (approximately 50m east of the slipway).

Several chemicals of concern were identified in groundwater at concentrations above the adopted marine water criteria, with exceedances of chromium, copper and zinc reported. These chemical exceedances do not significantly exceed criteria and are indicative of the ubiquitous nature of these metals in an urban environment.

Groundwater conditions at borehole MW01 indicated strongly alkaline, fresh water. The difference in electrical conductivity (i.e. salinity) between boreholes MW01 and MW02 can be explained by the proximity of MW01 to the Parramatta River (< 5 m), and the incline towards MW02, which is likely to be receiving fresh water from up gradient locations.

13.3 Site Management Requirements

Given the reported exceedances of petroleum hydrocarbons, heavy metals and organotins (TBT) in sediment samples collected from the foreshore area of the slipway, and other proximate areas, a site Remedial Action Plan (RAP) is recommended to facilitate site redevelopment. The RAP will require additional data gap assessment of contaminant concentrations along the slipway, propose remedial measures, and detail site management requirements. Site materials impacted with organotins will require management in accordance with the NSW EPA *Organotin Waste Materials Chemical Control Order 1989*, which requires that organotin waste produced during the application or removal of ¹⁸¹⁶⁶ | Gladesville Bay Marina Pty Ltd

antifouling compounds from marine vessels shall be promptly collected for disposal, and shall be prevented from entering any waters. The order further states that organotin waste materials shall be disposed of in a controlled landfill in sealed containers. NSW EPA approval is required for any disposal of TBT source material (e.g. paint chips and blasting grit) and organotin impacted soils as waste to landfill. It is considered that site materials exhibiting hydrocarbon and heavy metal impact could be managed accordingly, subject to collection of additional waste classification data.

The results of this investigation indicate that any extension/improvement of the marina facilities must take into consideration the need to avoid/reduce sediment disturbance in areas proximate to the slipway to minimise impacts to marine flora and fauna. It is understood that the slipway area will not be used for maintenance operations under the new marina design and the underlying concrete slab will not be physically altered or removed as part of the works. It is noted that sediments beneath the slipway/hardstand require further assessment to confirm that the risk from potential contaminants under the slipway are acceptable for any future use of the land, as the slipway was operational at the time of investigation preventing investigations at the time. Groundwater monitoring results indicate a low risk to human health or the environment. Based on results of this investigation, there is considered to be a low likelihood that the former UST tankpit has any ongoing impact on soil or groundwater conditions on site.

Contaminant concentrations in sediment accumulated at the base of the slipway indicates potential for human health risk should this area be used in the future. Site procedures must therefore be managed to ensure that site workers and future site occupants are not exposed to soil or sediment within / beneath the slipway and workshop areas.

Based on the above, the RAP would require implementation of a construction and environment management plan (CEMP) for the duration of site works, which would consider potential human health and environmental impacts arising from the development. Any future development must consider the identified impact to sediment and groundwater at the site, and potentially soils beneath the slipway, as well as the proximity of the site to the Parramatta River. An appropriate soil/sediment management plan should be implemented for the duration of the works to minimise the risk of negative impacts on the surrounding environment. An EMP may also be required for future management of contaminants under the slipway should these be identified during investigation under the slab.

14. Conclusions and Recommendations

Zoic Environmental Pty Ltd was requested by Gladesville Bay Marina Pty Ltd to complete a contamination assessment of soil, sediment and groundwater on site to support a development application. The assessment included a desktop study of relevant background information, and an intrusive investigation on site, including the installation of groundwater monitoring wells. The desktop study found two underground petrol storage tank's had been removed from site, and that the use of Organotins (tributyltin - TBT) was likely in boat cleaning and maintenance activities. Zoic drilled five boreholes and installed two groundwater wells, including the collection of soil samples from the soil profile, sampling of the wells and collection of sediment samples from three locations, including two adjoining the site's boat slipway.

Reported concentrations of petroleum hydrocarbons (TPH), heavy metals (copper, nickel, lead, mercury and zinc), and organotins (TBT) exceed the adopted criteria in slipway sediments/soils. Site redevelopment work that is to be carried out on the slipway and workshop area would be subject to a Remedial Action Plan (RAP) as sediments/soils pose potential ecological and human health exposure risk. The RAP will require additional assessment of contaminant concentrations along the slipway, propose remedial measures, and detail site management requirements. Site materials impacted with organotins will require management in accordance with the NSW EPA *Organotin Waste Materials Chemical Control Order 1989*, which requires that organotin waste produced during the application or removal of antifouling compounds from marine vessels shall be promptly collected for disposal, and shall be prevented from entering any waters. The order states that organotin waste materials shall be disposed of in a controlled landfill in sealed containers. NSW EPA approval is required for any disposal of TBT source material (e.g. paint chips and blasting grit) and organotin impacted soils as waste to landfill. It is considered that site materials exhibiting hydrocarbon and heavy metal impact could be managed accordingly, subject to collection of additional waste classification data.

The results of this investigation indicate that any extension/improvement of the marina facilities must take into consideration the need to avoid/reduce sediment disturbance in areas proximate to the slipway to minimise impacts to marine flora and fauna. It is understood that the slipway area will not be used for maintenance operations under the new marina design and the underlying concrete slab will not be physically altered or removed as part of the works. It is noted that sediments beneath the slipway hard stand require further assessment to confirm that the risk from potential contaminants under the slipway are acceptable for any future use of the land, as the site was operational at the time of investigation. Groundwater monitoring results indicate a low risk to human health or the environment. Based on results of this investigation, there is considered to be a low likelihood that the former UST tankpit has any ongoing impact on soil or groundwater conditions on site.

Based on observed contaminant concentrations in slipway sediments, site activities must be managed to ensure that site workers and future site occupants are not exposed to soils and sediments within / beneath the slipway and workshop areas.

15. References

ANZECC / ARMCANZ (2013) Sediment Quality Guidelines.

AS 4482 (1999) Guide to the sampling and investigation of potentially contaminated soil. Standards Australia, Sydney.

NEPM (2013) National Environment Protection (Assessment of Site Contamination) Measure, Schedule A and Schedules B(1)-B(9). National Environment Protection Council, Adelaide.

NSW EPA (1985) Organotin Waste Materials Chemical Control Order 1989, NSW EPA, Sydney.

NSW EPA (2017) Contaminated Land Management: Guidelines for the NSW Site Auditor Scheme (3rd edition). NSW EPA, Sydney.

NSW EPA (1995) Contaminated Sites: Sampling Design Guidelines. NSW EPA, Sydney.

NSW EPA (2014) NSW EPA Waste Classification Guidelines, Part 1: Classifying Waste

NSW EPA (2015) Contaminated Sites: Guidelines on the Duty to Report Contamination under the Contaminated Land Management Act 1997. NSW DECC, Sydney.

NSW OEH (2011) Contaminated Sites: Guidelines for Consultants Reporting on Contaminated Sites. NSW OEH, Sydney.

US EPA (2017) Regional Screening Levels (RSLs) - Region 9.

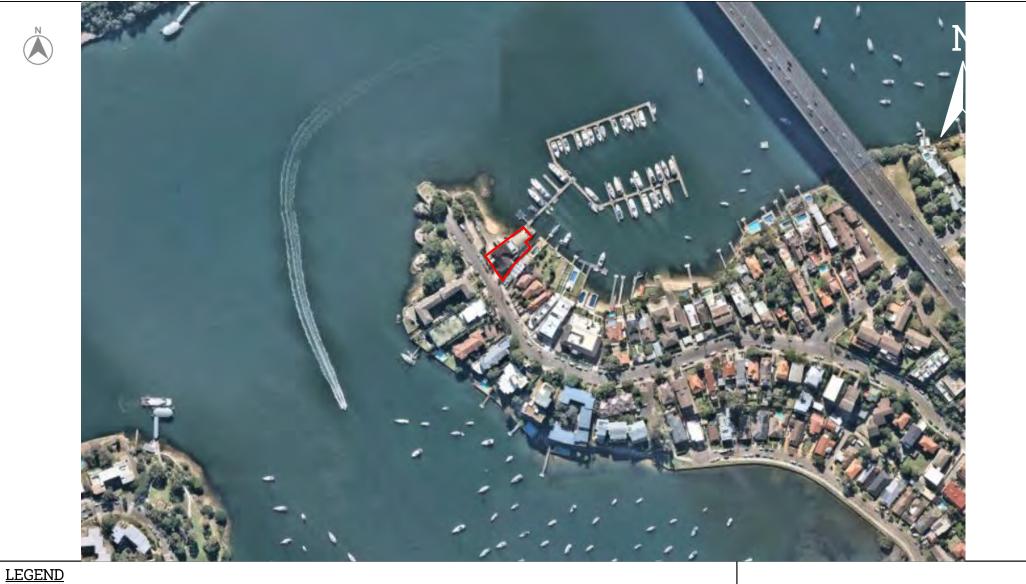
16. Limitations

This report has been prepared for use by the Client who commissioned the works in accordance with the project brief only, and has been based in part on information obtained from the Client and other parties. The findings of this report are based on the scope of work outlined in Section 2.3. The report has been prepared specifically for the Client for the purposes of the commission, and use by any nominated third party in the agreement between Zoic and the Client. No warranties, express or implied, are offered to any third parties and no liability will be accepted for use or interpretation of this report by any third party (other than where specifically nominated in an agreement with the Client).

This report relates to only this project and all results, conclusions and recommendations made should be reviewed by a competent person with experience in environmental investigations, before being used for any other purpose. This report should not be reproduced without prior approval by the Client, or amended in any way without prior approval by Zoic.

Subject to the scope of work, Zoic's assessment was limited strictly to identifying typical environmental conditions associated with the subject property area and does not include evaluation of any other issues.

Changes to the subsurface conditions may occur subsequent to the investigations described herein, through natural processes or through the intentional or accidental addition of contaminants. The conclusions and recommendations reached in this report are based on the information obtained at the time of the investigation.


This report does not comment on any regulatory obligations based on the findings. This report relates only to the objectives stated and does not relate to any other work conducted for the Client.

The absence of any identified hazardous or toxic materials on the site should not be interpreted as a guarantee that such materials do not exist on the site.

All conclusions regarding the site are the professional opinions of the Zoic personnel involved with the project, subject to the qualifications made above. While normal assessments of data reliability have been made, Zoic assumes no responsibility or liability for errors in any data obtained from regulatory agencies, statements from sources outside of Zoic, or developments resulting from situations outside the scope of this project.

Zoic is not engaged in environmental assessment and reporting for the purpose of advertising sales promoting, or endorsement of any client interests, including raising investment capital, recommending investment decisions, or other publicity purposes. The Client acknowledges that this report is for its exclusive use.

Appendix A Figures

Approximate Site Location		Figure 1: Site Loca	tion Plan
		Site Address: 380 Victoria P	lace, Drummoyne NSW
This product has been created to support the main report and is not suitable for other	Not to Scale	Client: Gladesville Bay Marina Pty Ltd	
purposes. Image courtesy of Google Maps		Job Number: 18166	Date: September 2019

This product has been created to support the main report and is not suitable for other purposes. Image courtesy of Google Maps

0m	10m	Site Address: Site Address:	380 Victoria Place, Drummoyne
		Client: Gladesville Bay Mari	na Pty Ltd
Scale indicat	ive only	Job Number: 18166	Date: September 2019

This product has been created to support the main report and is not suitable for other purposes. Image courtesy of Google Maps

Date: September 2019

Job Number: 18166

Scale indicative only

		L'I ME		State Inc.	21	1		2 4		Vi.		
Ň	14 S										1	La Maria
	- 5- D.	40月8日	Field ID	Type Sediment	Analyte		entration	Exceedance	Criteria			
	6 6 1 10	TOTAL STREET	SD-3 SD-3	Sediment	Copper Mercury	1.6 m	ng/kg g/kg	Ecological Ecological	270 mg/kg 1 mg/kg	\$		2 4
	and a	3. 2	SD-3	Sediment	TBT	4.9 m		Ecological	0.07 mg/kg			
	40 C	22	000	Sediment	IDI	4.9 11.	IG/ KG	Leological	0.07 mg/kg			
	A.	141		a the second	53		Field ID	Туре	Analyte	Concentra	ation Exceedance	Criteria
		11.	1000	1-4-1		0	SD-1	Sediment	TPH	975 mg/kg		550 mg/kg
			11/1			Patto	SD-1	Sediment	Copper	10000 mg/		270 mg/kg
	TEN	100	-	and in the second se		11 14	SD-1	Sediment	Lead	920 mg/kg		220 mg/kg
	10				And and a state of the state of	The all	SD-1	Sediment	Zinc	7500 mg/ł		410 mg/kg
		A State of the sta	1001		-	and in case	SD-1	Sediment	TBT	36 mg/kg	Ecological	0.07 mg/kg
	L.		MAY 1		*	-						A second
			18			1	1.		110			
		-				1		-				-
	Field ID	Type	Analyte	Concent		edance	Criteria	100	A AI	13	11 1 X	1 /22
	MW01	Groundwater		22 μg/L		ogical	1.3 μg/L	-		0/25	L.A.	
	MW01	Groundwater	Zinc	66 µg/L	ECOI	ogical	15 µg/L	9/15		100	Self.	
				1						1.3	123 - 13	10-10-10-10-10-10-10-10-10-10-10-10-10-1
		7. 1					Field ID	Туре	Analyte	Concentra	tion Exceedance	Criteria
			A = A	S. James	La g	and the second	SD-2	Sediment	TPH	2825 mg/k		550 mg/kg
	2		1.00				SD-2	Sediment	Copper	19000 mg/		270 mg/kg
	10.000	1			A NO	-	SD-2	Sediment	Lead	280 mg/kg		220 mg/kg
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2.	KIS		T N N	100	SD-2	Sediment	Mercury	1.8 mg/kg	Ecological	1 mg/kg
	100	11/			1	1000	SD-2	Sediment	Zinc	6300 mg/k		410 mg/kg
	1 4 1				1	No.	SD-2	Sediment	TBT	52 mg/kg	Ecological	0.07 mg/kg
	Field ID	Туре	Analyte	Concent	ration Exc	eedance	Criteria		W.		N	-
	MW02	Groundwater				logical	4.4 µg/L			# 17h	10	
	MW02	Groundwater		6 μg/L		logical	1.3 µg/L	Sel .	A State	Balle	Sec. 19	and the second
	MW02	Groundwater		22 µg/L		logical	15 µg/L	100			E CENTRAL STREET	
	and the second		111	1	100	1X	71/6	3.	1 failes	2 Channel	the state	
EGEND												
	Approvimate	e Site Bounda	rv							I F	ioure 4 [.] Site	Exceedances
	Borehole loc		ту							1	iguie i. oite	
_			11.1									
-		d monitoring		on				г			ite Address: 380 Vio	ctoria Place, Drummoyne
•	Sediment sa	mple location	l						0m	10m _		
This product has	been created to s	support the main	report and is r	not suitable for o	ther						lient: Gladesville Ba	ay Marina Pty Ltd
purposes. Image	courtesy of Goog	le Maps						-	Scale indicativ	ve only J	ob Number: 18166	Date: September 2019
									Source murouti			Date. September 2015

Approximate Site Boundary		Figure 5: Site Work	Considerations
	0m 10m	Site Address: 380 Victoria P	lace, Drummoyne
This product has been created to support the main report and is not suitable for other		Client: Gladesville Bay Mari	na Pty Ltd
purposes. Image courtesy of Google Maps	Scale indicative only	Job Number: 18166	Date: September 2019

Appendix B Result Summary Tables

Soil Analytical Data (mg/kg) - 4 June 2019

_	Benzene	Toluene	Ethylbenzene	Xylenes	TRH-F1	Naphthalene	B(a)P TEQ	B(a)P	PAHs	As	Cd	Cr	Cu	Ni	Pb	Hg	Zn	TBT	Friable Asbestos
Soil HIL D							40	3	4000	3000	900	3600 (VI)	240000	6000	1500	730	400000		Presence
Soil HSL D (<1m)	3	NL	NL	230	260	5													
USEPA RSL																		2.5	
BH01 (0.1)	<0.2	<0.5	<1	<3	<25	<0.1	<0.5	<0.05	<0.05	<4	<0.4	15	1	<1	5	<0.1	6	<0.0005	Non-detect
BH02 (0.1)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	Non-detect
BH02 (1.9)	<0.2	<0.5	<1	<3	<25	<0.1	<0.5	0.2	0.51	<4	<0.4	13	38	9	25	<0.1	46	0.0046	-
BH03 (0.2)	<0.2	<0.5	<1	<3	<25	<0.1	<0.5	1.3	1.6	6	<0.4	28	25	8	45	<0.1	48	0.28	Non-detect
BH04 (0.1)	<0.2	<0.5	<1	<3	<25	0.1	1.9	1.3	13	16	2	16	4700	25	1000	2.5	1200	<0.01	Non-detect
Dup-1	<0.2	<0.5	<1	<3	<25	<0.1	<0.5	<0.05	<0.05	<4	<0.4	9	25	4	15	<0.1	22	0.0018	-
Trip-1	<0.1	<0.1	<0.1	<0.3	<20	<0.5	<0.5	<0.5	<0.5	4.6	<0.4	17	34	8.8	36	<0.1	60	0.0011	-

	TPHs	PAHs	As	Cd	Cr	Cu	Ni	Pb	Hg	Zn	TBT
Guidance Value	280	10000	20	1.5	80	65	21	50	0.15	200	0.009
SQG - High	550	50000	70	10	370	270	52	220	1	410	0.07
SD-1	975	5.8	12	<0.4	61	10000	27	920	0.8	7500	36
SD-2	2825	15	17	1	150	19000	75	280	1.8	6300	52
SD-3	<75	5.9	10	<0.4	17	570	5	130	1.6	260	4.9

Sediment Analytical Data (mg/kg) - 13 June 2019

Groundwater Analytical Data (µg/L) - 13 June 2019

	Benzene	Toluene	Ethylbenzene	m+p-xylene	o-xylene	Xylene(total)	TRH-F1	B(a)P	Naphthalene	Anthracene	Fluoranthene	Penanthrene	As	Cd	Cr	Cu	Ni	Pb	Hg	Zn
Marine Water	700	180	80	75*	350	-	-	0.1	70	0.1	1		13	5.5	4.4	1.3	70	4.4	0.4	15
MW01	<1	<1	<1	<2	<1	<3	<10	<1	<1	<1	<1	<1	<1	0.8	1	22	4	2	<0.05	66
MW02	7	43	6	30	18	48	70	<1	<1	<1	<1	<1	7	<0.1	7	4	6	<1	0.4	5
Dup-2	7	40	6	27	17	44	74	<1	<1	<1	<1	<1	7	<0.1	7	6	8	<1	0.4	22
Trip-2	6	39	5	25	16	41	60	2	<1	1	2	2	7	0.2	10	4	7	1	0.5	5

* Value for m-xylene (most conservative)

** Marine criteria below laboratory LOR for B(a)P and Anthracene (all results non-detect)

*** Freshwater value adopted for As.

Appendix C Laboratory Certificates

CERTIFICATE OF ANALYSIS 218969

Client Details	
Client	Zoic Environmental
Attention	Tyler Creese
Address	Suite 1, Level 9, 189 Kent Street, Sydney, NSW, 2000

Sample Details	
Your Reference	<u> 18166 - Marina</u>
Number of Samples	9 soil, 2 water
Date samples received	04/06/2019
Date completed instructions received	04/06/2019

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details	
Date results requested by	12/06/2019
Date of Issue	20/06/2019
Reissue Details	This report replaces R00 created on 12/06/2019 due to: Sample ID Amended (Client Request)
NATA Accreditation Number 2901.	This document shall not be reproduced except in full.
Accredited for compliance with ISO/	IEC 17025 - Testing. Tests not covered by NATA are denoted with *

Asbestos Approved By

Analysed by Asbestos Approved Identifier: Aida Marner Authorised by Asbestos Approved Signatory: Lucy Zhu <u>Results Approved By</u> Giovanni Agosti, Group Technical Manager

Lucy Zhu, Senior Asbestos Analyst Nancy Zhang, Laboratory Manager, Sydney Steven Luong, Organics Supervisor

Authorised By

Nancy Zhang, Laboratory Manager

vTRH(C6-C10)/BTEXN in Soil					
Our Reference		218969-1	218969-5	218969-6	218969-7
Your Reference	UNITS	BH01	BH02	BH03	BH04
Depth		0.1	1.9	0.2	0.1
Date Sampled		04/06/2019	04/06/2019	04/06/2019	04/06/2019
Type of sample		soil	soil	soil	soil
Date extracted	-	06/06/2019	06/06/2019	06/06/2019	06/06/2019
Date analysed	-	07/06/2019	07/06/2019	07/06/2019	07/06/2019
TRH C ₆ - C ₉	mg/kg	<25	<25	<25	<25
TRH C6 - C10	mg/kg	<25	<25	<25	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1	<1
Total +ve Xylenes	mg/kg	<1	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	110	104	104	102

svTRH (C10-C40) in Soil					
Our Reference		218969-1	218969-5	218969-6	218969-7
Your Reference	UNITS	BH01	BH02	BH03	BH04
Depth		0.1	1.9	0.2	0.1
Date Sampled		04/06/2019	04/06/2019	04/06/2019	04/06/2019
Type of sample		soil	soil	soil	soil
Date extracted	-	06/06/2019	06/06/2019	06/06/2019	06/06/2019
Date analysed	-	06/06/2019	07/06/2019	07/06/2019	07/06/2019
TRH C ₁₀ - C ₁₄	mg/kg	<50	<50	<50	<50
TRH C ₁₅ - C ₂₈	mg/kg	<100	<100	<100	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100	<100	<100	<100
TRH >C10 -C16	mg/kg	<50	<50	<50	<50
TRH >C10 - C16 less Naphthalene (F2)	mg/kg	<50	<50	<50	<50
TRH >C ₁₆ -C ₃₄	mg/kg	<100	<100	<100	100
TRH >C ₃₄ -C ₄₀	mg/kg	<100	<100	<100	<100
Total +ve TRH (>C10-C40)	mg/kg	<50	<50	<50	100
Surrogate o-Terphenyl	%	79	78	78	80

PAHs in Soil				_	
Our Reference		218969-1	218969-5	218969-6	218969-7
Your Reference	UNITS	BH01	BH02	BH03	BH04
Depth		0.1	1.9	0.2	0.1
Date Sampled		04/06/2019	04/06/2019	04/06/2019	04/06/2019
Type of sample		soil	soil	soil	soil
Date extracted	-	06/06/2019	06/06/2019	06/06/2019	06/06/2019
Date analysed	-	07/06/2019	07/06/2019	07/06/2019	07/06/2019
Naphthalene	mg/kg	<0.1	<0.1	<0.1	0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	0.2
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	0.1	0.1	1.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	0.2
Fluoranthene	mg/kg	<0.1	0.2	0.3	2.1
Pyrene	mg/kg	<0.1	0.2	0.3	2.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	0.1	1.1
Chrysene	mg/kg	<0.1	<0.1	0.2	1.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	0.3	2.1
Benzo(a)pyrene	mg/kg	<0.05	0.06	0.2	1.3
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	0.7
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	0.2
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	0.1	0.9
Total +ve PAH's	mg/kg	<0.05	0.51	1.6	13
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	1.9
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	1.9
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	1.9
Surrogate p-Terphenyl-d14	%	88	85	87	90

Acid Extractable metals in soil						
Our Reference		218969-1	218969-5	218969-6	218969-7	218969-12
Your Reference	UNITS	BH01	BH02	BH03	BH04	BH01 - [TRIPLICATE]
Depth		0.1	1.9	0.2	0.1	0.1
Date Sampled		04/06/2019	04/06/2019	04/06/2019	04/06/2019	04/06/2019
Type of sample		soil	soil	soil	soil	soil
Date prepared	-	06/06/2019	06/06/2019	06/06/2019	06/06/2019	06/06/2019
Date analysed	-	06/06/2019	06/06/2019	06/06/2019	06/06/2019	06/06/2019
Arsenic	mg/kg	<4	<4	6	16	<4
Cadmium	mg/kg	<0.4	<0.4	<0.4	2	<0.4
Chromium	mg/kg	15	13	28	16	9
Copper	mg/kg	1	38	25	4,700	1
Lead	mg/kg	5	25	45	1,000	5
Mercury	mg/kg	<0.1	<0.1	<0.1	2.5	<0.1
Nickel	mg/kg	<1	9	8	25	<1
Zinc	mg/kg	6	46	48	1,200	6

Moisture					
Our Reference		218969-1	218969-5	218969-6	218969-7
Your Reference	UNITS	BH01	BH02	BH03	BH04
Depth		0.1	1.9	0.2	0.1
Date Sampled		04/06/2019	04/06/2019	04/06/2019	04/06/2019
Type of sample		soil	soil	soil	soil
Date prepared	-	06/06/2019	06/06/2019	06/06/2019	06/06/2019
Date analysed	-	07/06/2019	07/06/2019	07/06/2019	07/06/2019
Moisture	%	7.8	17	23	21

Asbestos ID - soils				_	
Our Reference		218969-1	218969-4	218969-6	218969-7
Your Reference	UNITS	BH01	BH02	BH03	BH04
Depth		0.1	0.1	0.2	0.1
Date Sampled		04/06/2019	04/06/2019	04/06/2019	04/06/2019
Type of sample		soil	soil	soil	soil
Date analysed	-	07/06/2019	07/06/2019	07/06/2019	07/06/2019
Sample mass tested	g	Approx. 30g	Approx. 40g	Approx. 50g	Approx. 35g
Sample Description	-	Brown fine- grained soil & rocks			
Asbestos ID in soil	-	No asbestos detected at reporting limit of 0.1g/kg			
		Organic fibres detected	Organic fibres detected	Organic fibres detected	Organic fibres detected
Trace Analysis	-	No asbestos detected	No asbestos detected	No asbestos detected	No asbestos detected

Organotin Compounds				_	
Our Reference		218969-1	218969-5	218969-6	218969-7
Your Reference	UNITS	BH01	BH02	BH03	BH04
Depth		0.1	1.9	0.2	0.1
Date Sampled		04/06/2019	04/06/2019	04/06/2019	04/06/2019
Type of sample		soil	soil	soil	soil
Date extracted	-	07/06/2019	07/06/2019	07/06/2019	07/06/2019
Date analysed	-	08/06/2019	08/06/2019	08/06/2019	08/06/2019
Tributyltin as Sn	µg/kg	<0.5	4.6	280	<10
Surrogate (Tripropyltin)	%	100	96	100	100

vTRH(C6-C10)/BTEXN in Water			
Our Reference		218969-10	218969-11
Your Reference	UNITS	Trip Spike	Trip Blank
Depth		-	-
Date Sampled		04/06/2019	04/06/2019
Type of sample		water	water
Date extracted	-	05/06/2019	05/06/2019
Date analysed	-	06/06/2019	06/06/2019
TRH C ₆ - C ₉	μg/L	[NA]	<10
TRH C ₆ - C ₁₀	μg/L	[NA]	<10
TRH C ₆ - C ₁₀ less BTEX (F1)	μg/L	[NA]	<10
Benzene	μg/L	95%	<1
Toluene	μg/L	94%	<1
Ethylbenzene	μg/L	95%	<1
m+p-xylene	μg/L	89%	<2
o-xylene	μg/L	90%	<1
Naphthalene	μg/L	[NA]	<1
Surrogate Dibromofluoromethane	%	112	106
Surrogate toluene-d8	%	97	94
Surrogate 4-BFB	%	102	87

Method ID	Methodology Summary
ASB-001	Asbestos ID - Qualitative identification of asbestos in bulk samples using Polarised Light Microscopy and Dispersion Staining Techniques including Synthetic Mineral Fibre and Organic Fibre as per Australian Standard 4964-2004.
Ext-054	Analysed by MPL Envirolab
Inorg-008	Moisture content determined by heating at 105+/-5 °C for a minimum of 12 hours.
Metals-020	Determination of various metals by ICP-AES.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
	Note, the Total +ve TRH PQL is reflective of the lowest individual PQL and is therefore "Total +ve TRH" is simply a sum of the positive individual TRH fractions (>C10-C40).
Org-012	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013. For soil results:-
	 'EQ PQL'values are assuming all contributing PAHs reported as <pql actually="" and="" approach="" are="" at="" be="" calculation="" can="" conservative="" contribute="" false="" give="" given="" is="" li="" may="" most="" not="" pahs="" positive="" pql.="" present.<="" teq="" teqs="" that="" the="" this="" to=""> 'EQ zero'values are assuming all contributing PAHs reported as <pql and="" approach="" are="" below="" but="" calculation="" conservative="" contribute="" false="" is="" least="" li="" more="" negative="" pahs="" pql.<="" present="" susceptible="" teq="" teqs="" that="" the="" this="" to="" when="" zero.=""> 'EQ half PQL'values are assuming all contributing PAHs reported as <pql "total="" +ve="" a="" above.="" and="" approaches="" are="" between="" conservative="" half="" hence="" individual="" is="" least="" li="" lowest="" mid-point="" most="" note,="" of="" pahs="" pahs"="" pahs.<="" positive="" pql="" pql.="" reflective="" simply="" stipulated="" sum="" the="" therefore="" total=""> </pql></pql></pql>
Org-013	Water samples are analysed directly by purge and trap GC-MS.
Org-014	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.

Method ID	Methodology Summary
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater. Note, the Total +ve Xylene PQL is reflective of the lowest individual PQL and is therefore "Total +ve Xylenes" is simply a sum of the positive individual Xylenes.

QUALITY CONT	ROL: vTRH	(C6-C10)	/BTEXN in Soil	Duplicate			Spike Recovery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-3	218969-5
Date extracted	-			06/06/2019	1	06/06/2019	06/06/2019		06/06/2019	06/06/2019
Date analysed	-			07/06/2019	1	07/06/2019	07/06/2019		07/06/2019	07/06/2019
TRH C ₆ - C ₉	mg/kg	25	Org-016	<25	1	<25	<25	0	104	93
TRH C ₆ - C ₁₀	mg/kg	25	Org-016	<25	1	<25	<25	0	104	93
Benzene	mg/kg	0.2	Org-016	<0.2	1	<0.2	<0.2	0	96	87
Toluene	mg/kg	0.5	Org-016	<0.5	1	<0.5	<0.5	0	109	97
Ethylbenzene	mg/kg	1	Org-016	<1	1	<1	<1	0	105	98
m+p-xylene	mg/kg	2	Org-016	<2	1	<2	<2	0	105	91
o-Xylene	mg/kg	1	Org-016	<1	1	<1	<1	0	105	93
naphthalene	mg/kg	1	Org-014	<1	1	<1	<1	0	[NT]	[NT]
Surrogate aaa-Trifluorotoluene	%		Org-016	121	1	110	110	0	124	109

QUALITY CO	NTROL: svT	RH (C10-	-C40) in Soil			Du	plicate		Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-3	218969-5
Date extracted	-			06/06/2019	1	06/06/2019	06/06/2019		06/06/2019	06/06/2019
Date analysed	-			06/06/2019	1	06/06/2019	07/06/2019		06/06/2019	07/06/2019
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-003	<50	1	<50	<50	0	108	88
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-003	<100	1	<100	<100	0	110	95
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-003	<100	1	<100	<100	0	100	90
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-003	<50	1	<50	<50	0	108	88
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-003	<100	1	<100	<100	0	110	95
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-003	<100	1	<100	<100	0	100	90
Surrogate o-Terphenyl	%		Org-003	123	1	79	79	0	94	87

QUALI	TY CONTRO	L: PAHs	in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-3	218969-5
Date extracted	-			06/06/2019	1	06/06/2019	06/06/2019		06/06/2019	06/06/2019
Date analysed	-			07/06/2019	1	07/06/2019	07/06/2019		07/06/2019	07/06/2019
Naphthalene	mg/kg	0.1	Org-012	<0.1	1	<0.1	<0.1	0	108	102
Acenaphthylene	mg/kg	0.1	Org-012	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Acenaphthene	mg/kg	0.1	Org-012	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Fluorene	mg/kg	0.1	Org-012	<0.1	1	<0.1	<0.1	0	100	92
Phenanthrene	mg/kg	0.1	Org-012	<0.1	1	<0.1	<0.1	0	96	85
Anthracene	mg/kg	0.1	Org-012	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Fluoranthene	mg/kg	0.1	Org-012	<0.1	1	<0.1	<0.1	0	92	84
Pyrene	mg/kg	0.1	Org-012	<0.1	1	<0.1	<0.1	0	94	86
Benzo(a)anthracene	mg/kg	0.1	Org-012	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Chrysene	mg/kg	0.1	Org-012	<0.1	1	<0.1	<0.1	0	98	95
Benzo(b,j+k)fluoranthene	mg/kg	0.2	Org-012	<0.2	1	<0.2	<0.2	0	[NT]	[NT]
Benzo(a)pyrene	mg/kg	0.05	Org-012	<0.05	1	<0.05	<0.05	0	98	93
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-012	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-012	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Benzo(g,h,i)perylene	mg/kg	0.1	Org-012	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Surrogate p-Terphenyl-d14	%		Org-012	94	1	88	85	3	91	87

QUALITY CONT	ROL: Acid E	xtractabl	e metals in soil	_		Duj	plicate		Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-3	218969-5
Date prepared	-			06/06/2019	1	06/06/2019	06/06/2019		06/06/2019	06/06/2019
Date analysed	-			06/06/2019	1	06/06/2019	06/06/2019		06/06/2019	06/06/2019
Arsenic	mg/kg	4	Metals-020	<4	1	<4	<4	0	104	103
Cadmium	mg/kg	0.4	Metals-020	<0.4	1	<0.4	<0.4	0	102	89
Chromium	mg/kg	1	Metals-020	<1	1	15	9	50	104	94
Copper	mg/kg	1	Metals-020	<1	1	1	2	67	105	80
Lead	mg/kg	1	Metals-020	<1	1	5	6	18	107	100
Mercury	mg/kg	0.1	Metals-021	<0.1	1	<0.1	<0.1	0	90	83
Nickel	mg/kg	1	Metals-020	<1	1	<1	<1	0	99	89
Zinc	mg/kg	1	Metals-020	<1	1	6	6	0	103	98

QUALITY CO	ONTROL: Or	ganotin C	compounds		Duplicate				Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	218969-5
Date extracted	-			07/06/2019	1	07/06/2019	07/06/2019		07/06/2019	07/06/2019
Date analysed	-			07/06/2019	1	08/06/2019	08/06/2019		07/06/2019	07/06/2019
Tributyltin as Sn	µg/kg	0.5	Ext-054	<0.5	1	<0.5	<0.5	0	100	96
Surrogate (Tripropyltin)	%		Ext-054	100	1	100	99	1	103	97

QUALITY CONTR	ROL: vTRH((C6-C10)/E	3TEXN in Water			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	[NT]
Date extracted	-			05/06/2019	[NT]		[NT]	[NT]	05/06/2019	
Date analysed	-			06/06/2019	[NT]		[NT]	[NT]	06/06/2019	
TRH C ₆ - C ₉	µg/L	10	Org-016	<10	[NT]		[NT]	[NT]	97	
TRH C ₆ - C ₁₀	µg/L	10	Org-016	<10	[NT]		[NT]	[NT]	97	
Benzene	µg/L	1	Org-016	<1	[NT]		[NT]	[NT]	106	
Toluene	µg/L	1	Org-016	<1	[NT]		[NT]	[NT]	104	
Ethylbenzene	µg/L	1	Org-016	<1	[NT]		[NT]	[NT]	93	
m+p-xylene	µg/L	2	Org-016	<2	[NT]		[NT]	[NT]	91	
o-xylene	µg/L	1	Org-016	<1	[NT]		[NT]	[NT]	95	
Naphthalene	µg/L	1	Org-013	<1	[NT]		[NT]	[NT]	[NT]	
Surrogate Dibromofluoromethane	%		Org-016	104	[NT]		[NT]	[NT]	96	
Surrogate toluene-d8	%		Org-016	95	[NT]		[NT]	[NT]	102	
Surrogate 4-BFB	%		Org-016	96	[NT]		[NT]	[NT]	92	

Result Definiti	Result Definitions							
NT	Not tested							
NA	Test not required							
INS	Insufficient sample for this test							
PQL	Practical Quantitation Limit							
<	Less than							
>	Greater than							
RPD	Relative Percent Difference							
LCS	Laboratory Control Sample							
NS	Not specified							
NEPM	National Environmental Protection Measure							
NR	Not Reported							

Quality Contro	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.
Australian Drinking	Water Guidelines recommend that Thermotolerant Coliform Faecal Enterococci & E Coli levels are less than

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Report Comments

Asbestos: Excessive sample volume was provided for asbestos analysis. A portion of the supplied sample was sub-sampled according to Envirolab procedures. We cannot guarantee that this sub-sample is indicative of the entire sample. Envirolab recommends supplying 40-50g (50mL) of sample in its own container as per AS4964-2004. Note: Samples 218969-1, 4, 6, 7 were sub-sampled from bags provided by the client.

Acid Extractable Metals in Soil: The laboratory RPD acceptance criteria has been exceeded for 218969-1 for Cr. Therefore a triplicate result has been issued as laboratory sample number 218969-12.

Organotin Compounds - analysed by MPL, report no 227765.

		-	HAIN O				_		-										(Ený)rolab)
			ENV	IROL	AB SEF	VICES													
Client:	Zoic E	Invironmental		7		and Numbe			\overline{cc}		1.0	1		Env	rirola	ab S	ervic	es	
Project Mgr: T. Creefe						/	811	26	- 1	lari	nq		12 A	shle	y St,	Chats	wood	, NSW, 2067	
Sampler:	R			PO No.:	-														
Address:				Envirolat) Services (Quote No. :_	_	_						Pho	ne: 0	2 99:	10 620	00	
	1			Date resu	ults require	d:								Fax:	: 0	2 99	10 620)1	
Email: <i>†v</i> ý	V. (rese P Zoic Con	n,ar		Or choose	e:_standan	d								E-m	ail: a	shie@	penvin	olabs	ervices.com.au
) Phone: /	V. (Clere Coic. Con 0481775243	Far		Note: Infon	n lah in advan	ce if urgent tun	amund.	is remuio	eri -		sumh	arge ap	dies 1	Coni	tart:	Ailer	en Hie		
	Sample info			index pages		er øgen an		o regan		s Reguli		erye up			Lacti	Anet			Comments
			1			~							- 1		1	<u> </u>			
Envirolab Sample ID	Client Sample ID	Date sampled	Type of sample	TRH/BEX	187 Rilely/ Tu.	Embo 39	saysaqs b	Enho 3											Provide as much information about the sample as you can
1	BHDI(0.1).	416/19	Soil	(X	2	\sim									+		(1)
2	BHO1 (0.5)		1		<u>├-^</u>					-							+		Harby Ta
-	BHO1 (1.4)																	(#Carbo 39=
	BH02 (0-1)		1-1		189		X				~ ~~				1	1		1	- TRH /BTEX
	BHO2 (1.9)						~	X											- PAHS
6	BH03 (0-2)				X	X									i —				- 8 metals
	BH04 (P-1)				$\frac{2}{x}$	Î									1		+		- asterta
	ПНОЧ (0·5)																		preme lassonce
9	$D_{\mu\rho} = 1$			1												\mathbf{t}			V 7
l.	Tra-1			Please	e so	1-10	Put	oh	ns										
10	Tripspile			X												1			ALL I
- H	Trip llook	*	1	Х							コ					1			(A) Asbestos,
										- T	MROL	BB.	Ent	170186 . 12	Servi	ces			= preince/
							_				3		Chats	vood l	SW 2	067			alsence
											n Nh				910 6				
												- '	218						
			ļ								ite Rec				19				
			<u> </u>	╉───									1: 16	0	<u>[</u> †	1	<u> </u>	<u> </u>	l
	<u> </u>		<u> </u>	4	 				L	He	ceived	t by:	$\neg \neg$	<u>)</u>	 	<u> </u>			<u> </u>
			<u>-</u>						┝╄				ibien pack Broke		┨╼╼-	+		 	
			<u>├</u>	┫────	<u> </u>				└──┤	<u></u>		intad	PACK		<u> </u>	+		 	
			<u> </u>	╂────		<u> </u>			\vdash		<u> </u>					+		<u> </u>	<u> </u>
	<u>. </u>			 		——————————————————————————————————————			┝─┦							+			
·			╉─────	╅────	<u> </u>				\vdash		<u> </u>				┨───			┣—	
				1							_				==	<u> </u>	<u></u>	—	
Polingulat	by (company): ZoiC										Ľ				100.0-	1		1	
Reinquisned Print Name:	ty (company): ZOIC	<u> </u>			by (compa				ther	1									plent (circle one)
Date & Time	U/6//19 Ghain of Cuctody Clions, Hystod 14/01		<u> </u>	Print Nan		- 100- 	35-	<u></u>		ठंन्रे				-			leved at		(if applicable)
Signature:	- Chain of Cuctody Clioni, Issted 14/01	2/68, Vortion 3, Page 1 of 1	 .	Date & Ti Signature		22122	110	└──	10,0		<u> </u>			i rans	pone	a oy:	nang de		d / courler Page No:

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

SAMPLE RECEIPT ADVICE

Client Details	
Client	Zoic Environmental
Attention	Tyler Creese

Sample Login Details	
Your reference	18166 - Marina
Envirolab Reference	218969
Date Sample Received	04/06/2019
Date Instructions Received	04/06/2019
Date Results Expected to be Reported	12/06/2019

Sample Condition	
Samples received in appropriate condition for analysis	Yes
No. of Samples Provided	9 soil, 2 water
Turnaround Time Requested	Standard
Temperature on Receipt (°C)	9.2
Cooling Method	Ice
Sampling Date Provided	YES

Comments Nil

Please direct any queries to:

Aileen Hie	Jacinta Hurst
Phone: 02 9910 6200	Phone: 02 9910 6200
Fax: 02 9910 6201	Fax: 02 9910 6201
Email: ahie@envirolab.com.au	Email: jhurst@envirolab.com.au

Analysis Underway, details on the following page:

Sample ID	VTRH(C6-C10)/BTEXN in Soil	svTRH (C10-C40) in Soil	PAHs in Soil	Acid Extractable metalsin soil	Asbestos ID - soils	Organotin Compounds	vTRH(C6-C10)/BTEXN in Water	On Hold
BH01	\checkmark	✓	\checkmark	\checkmark	\checkmark	\checkmark		
BH01								\checkmark
BH01								\checkmark
BH02					\checkmark			
BH02	\checkmark	\checkmark	✓	\checkmark		✓		
BH03	✓	✓	\checkmark	\checkmark	\checkmark	✓		
BH04	✓	✓	✓	\checkmark	✓	\checkmark		
BH04								✓
Dup-1								\checkmark
Trip Spike							✓	
Trip Blank							\checkmark	

The ' \checkmark ' indicates the testing you have requested. THIS IS NOT A REPORT OF THE RESULTS.

Additional Info

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.

Requests for longer term sample storage must be received in writing.

Please contact the laboratory immediately if observed settled sediment present in water samples is to be included in the extraction and/or analysis (exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, Total Recoverable metals and PFAS analysis where solids are included by default.

TAT for Micro is dependent on incubation. This varies from 3 to 6 days.

CERTIFICATE OF ANALYSIS 218969-A

Client Details	
Client	Zoic Environmental
Attention	Tyler Creese
Address	Suite 1, Level 9, 189 Kent Street, Sydney, NSW, 2000

Sample Details	
Your Reference	<u> 18166 - Marina</u>
Number of Samples	9 soil, 2 water
Date samples received	04/06/2019
Date completed instructions received	20/06/2019

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details

 Date results requested by
 21/06/2019

 Date of Issue
 28/06/2019

 NATA Accreditation Number 2901. This document shall not be reproduced except in full.

 Accredited for compliance with ISO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *

Asbestos Approved By

Analysed by Asbestos Approved Identifier: Aida Marner Authorised by Asbestos Approved Signatory: Lucy Zhu <u>Results Approved By</u> Giovanni Agosti, Group Technical Manager

Jaimie Loa-Kum-Cheung, Metals Supervisor Ken Nguyen, Reporting Supervisor Lucy Zhu, Senior Asbestos Analyst Steven Luong, Organics Supervisor Authorised By

Nancy Zhang, Laboratory Manager

vTRH(C6-C10)/BTEXN in Soil		
Our Reference		218969-A-9
Your Reference	UNITS	Dup-1
Depth		-
Date Sampled		04/06/2019
Type of sample		soil
Date extracted	-	20/06/2019
Date analysed	-	21/06/2019
TRH C6 - C9	mg/kg	<25
TRH C6 - C10	mg/kg	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25
Benzene	mg/kg	<0.2
Toluene	mg/kg	<0.5
Ethylbenzene	mg/kg	<1
m+p-xylene	mg/kg	<2
o-Xylene	mg/kg	<1
naphthalene	mg/kg	<1
Total +ve Xylenes	mg/kg	<3
Surrogate aaa-Trifluorotoluene	%	95

svTRH (C10-C40) in Soil		
Our Reference		218969-A-9
Your Reference	UNITS	Dup-1
Depth		-
Date Sampled		04/06/2019
Type of sample		soil
Date extracted	-	20/06/2019
Date analysed	-	21/06/2019
TRH C ₁₀ - C ₁₄	mg/kg	<50
TRH C ₁₅ - C ₂₈	mg/kg	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100
TRH >C10 -C16	mg/kg	<50
TRH >C10 - C16 less Naphthalene (F2)	mg/kg	<50
TRH >C ₁₆ -C ₃₄	mg/kg	<100
TRH >C ₃₄ -C ₄₀	mg/kg	<100
Total +ve TRH (>C10-C40)	mg/kg	<50
Surrogate o-Terphenyl	%	79

PAHs in Soil		
Our Reference		218969-A-9
Your Reference	UNITS	Dup-1
Depth		-
Date Sampled		04/06/2019
Type of sample		soil
Date extracted	-	20/06/2019
Date analysed	-	21/06/2019
Naphthalene	mg/kg	<0.1
Acenaphthylene	mg/kg	<0.1
Acenaphthene	mg/kg	<0.1
Fluorene	mg/kg	<0.1
Phenanthrene	mg/kg	<0.1
Anthracene	mg/kg	<0.1
Fluoranthene	mg/kg	<0.1
Pyrene	mg/kg	<0.1
Benzo(a)anthracene	mg/kg	<0.1
Chrysene	mg/kg	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2
Benzo(a)pyrene	mg/kg	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1
Total +ve PAH's	mg/kg	<0.05
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5
Surrogate p-Terphenyl-d14	%	88

Acid Extractable metals in soil		
Our Reference		218969-A-9
Your Reference	UNITS	Dup-1
Depth		-
Date Sampled		04/06/2019
Type of sample		soil
Date prepared	-	20/06/2019
Date analysed	-	21/06/2019
Arsenic	mg/kg	<4
Cadmium	mg/kg	<0.4
Chromium	mg/kg	9
Copper	mg/kg	25
Lead	mg/kg	15
Mercury	mg/kg	<0.1
Nickel	mg/kg	4
Zinc	mg/kg	22

Moisture		
Our Reference		218969-A-9
Your Reference	UNITS	Dup-1
Depth		-
Date Sampled		04/06/2019
Type of sample		soil
Date prepared	-	20/06/2019
Date analysed	-	21/06/2019
Moisture	%	23

Asbestos ID - soils		
Our Reference		218969-A-9
Your Reference	UNITS	Dup-1
Depth		-
Date Sampled		04/06/2019
Type of sample		soil
Date analysed	-	21/06/2019
Sample mass tested	g	Approx. 40g
Sample Description	-	Beige clayey soil & rocks
Asbestos ID in soil	-	No asbestos detected at reporting limit of 0.1g/kg
		Organic fibres detected
Trace Analysis	-	No asbestos detected

Organotin Compounds		
Our Reference		218969-A-9
Your Reference	UNITS	Dup-1
Depth		-
Date Sampled		04/06/2019
Type of sample		soil
Date extracted	-	27/06/2019
Date analysed	-	28/06/2019
TributyItin as Sn	µg/kg	1.8
Surrogate Triphenyltin	%	95

Method ID	Methodology Summary
ASB-001	Asbestos ID - Qualitative identification of asbestos in bulk samples using Polarised Light Microscopy and Dispersion Staining Techniques including Synthetic Mineral Fibre and Organic Fibre as per Australian Standard 4964-2004.
Ext-054	Analysed by MPL Envirolab
Inorg-008	Moisture content determined by heating at 105+/-5 °C for a minimum of 12 hours.
Metals-020	Determination of various metals by ICP-AES.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
	Note, the Total +ve TRH PQL is reflective of the lowest individual PQL and is therefore "Total +ve TRH" is simply a sum of the positive individual TRH fractions (>C10-C40).
Org-012	 Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013. For soil results:- 'EQ PQL'values are assuming all contributing PAHs reported as <pql actually="" and="" approach="" are="" at="" be="" calculation="" can="" conservative="" contribute="" false="" give="" given="" is="" li="" may="" most="" not="" pahs="" positive="" pql.="" present.<="" teq="" teqs="" that="" the="" this="" to=""> 'EQ zero'values are assuming all contributing PAHs reported as <pql and="" approach="" are="" below="" but="" calculation="" conservative="" contribute="" false="" is="" least="" li="" more="" negative="" pahs="" pql.<="" present="" susceptible="" teq="" teqs="" that="" the="" this="" to="" when="" zero.=""> 'EQ half PQL'values are assuming all contributing PAHs reported as <pql a="" above.<="" and="" approaches="" are="" between="" conservative="" half="" hence="" least="" li="" mid-point="" most="" pql.="" stipulated="" the=""> </pql></pql></pql> Note, the Total +ve PAHs PQL is reflective of the lowest individual PQL and is therefore "Total +ve PAHs" is simply a sum of the positive individual PAHs.
Org-014	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.

Method ID	Methodology Summary
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater. Note, the Total +ve Xylene PQL is reflective of the lowest individual PQL and is therefore "Total +ve Xylenes" is simply a sum of the positive individual Xylenes.

QUALITY CONT			Duplicate			Spike Recovery %				
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-8	[NT]
Date extracted	-			20/06/2019	[NT]		[NT]	[NT]	20/06/2019	
Date analysed	-			21/06/2019	[NT]		[NT]	[NT]	21/06/2019	
TRH C ₆ - C ₉	mg/kg	25	Org-016	<25	[NT]		[NT]	[NT]	79	
TRH C ₆ - C ₁₀	mg/kg	25	Org-016	<25	[NT]		[NT]	[NT]	79	
Benzene	mg/kg	0.2	Org-016	<0.2	[NT]		[NT]	[NT]	94	
Toluene	mg/kg	0.5	Org-016	<0.5	[NT]		[NT]	[NT]	78	
Ethylbenzene	mg/kg	1	Org-016	<1	[NT]		[NT]	[NT]	73	
m+p-xylene	mg/kg	2	Org-016	<2	[NT]		[NT]	[NT]	76	
o-Xylene	mg/kg	1	Org-016	<1	[NT]		[NT]	[NT]	74	
naphthalene	mg/kg	1	Org-014	<1	[NT]		[NT]	[NT]	[NT]	
Surrogate aaa-Trifluorotoluene	%		Org-016	101	[NT]		[NT]	[NT]	94	

QUALITY CO	QUALITY CONTROL: svTRH (C10-C40) in Soil								Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-8	[NT]
Date extracted	-			20/06/2019	[NT]		[NT]	[NT]	20/06/2019	
Date analysed	-			21/06/2019	[NT]		[NT]	[NT]	21/06/2019	
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-003	<50	[NT]		[NT]	[NT]	108	
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-003	<100	[NT]		[NT]	[NT]	111	
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-003	<100	[NT]		[NT]	[NT]	114	
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-003	<50	[NT]		[NT]	[NT]	108	
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-003	<100	[NT]		[NT]	[NT]	111	
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-003	<100	[NT]		[NT]	[NT]	114	
Surrogate o-Terphenyl	%		Org-003	85	[NT]	[NT]	[NT]	[NT]	102	[NT]

QUALI	QUALITY CONTROL: PAHs in Soil						plicate	Spike Recovery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-8	[NT]	
Date extracted	-			20/06/2019	[NT]		[NT]	[NT]	20/06/2019		
Date analysed	-			21/06/2019	[NT]		[NT]	[NT]	21/06/2019		
Naphthalene	mg/kg	0.1	Org-012	<0.1	[NT]		[NT]	[NT]	106		
Acenaphthylene	mg/kg	0.1	Org-012	<0.1	[NT]		[NT]	[NT]	[NT]		
Acenaphthene	mg/kg	0.1	Org-012	<0.1	[NT]		[NT]	[NT]	[NT]		
Fluorene	mg/kg	0.1	Org-012	<0.1	[NT]		[NT]	[NT]	98		
Phenanthrene	mg/kg	0.1	Org-012	<0.1	[NT]		[NT]	[NT]	90		
Anthracene	mg/kg	0.1	Org-012	<0.1	[NT]		[NT]	[NT]	[NT]		
Fluoranthene	mg/kg	0.1	Org-012	<0.1	[NT]		[NT]	[NT]	92		
Pyrene	mg/kg	0.1	Org-012	<0.1	[NT]		[NT]	[NT]	96		
Benzo(a)anthracene	mg/kg	0.1	Org-012	<0.1	[NT]		[NT]	[NT]	[NT]		
Chrysene	mg/kg	0.1	Org-012	<0.1	[NT]		[NT]	[NT]	94		
Benzo(b,j+k)fluoranthene	mg/kg	0.2	Org-012	<0.2	[NT]		[NT]	[NT]	[NT]		
Benzo(a)pyrene	mg/kg	0.05	Org-012	<0.05	[NT]		[NT]	[NT]	96		
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-012	<0.1	[NT]		[NT]	[NT]	[NT]		
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-012	<0.1	[NT]		[NT]	[NT]	[NT]		
Benzo(g,h,i)perylene	mg/kg	0.1	Org-012	<0.1	[NT]		[NT]	[NT]	[NT]		
Surrogate p-Terphenyl-d14	%		Org-012	98	[NT]		[NT]	[NT]	92		

QUALITY CONT	Duplicate				Spike Recovery %					
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-8	[NT]
Date prepared	-			20/06/2019	[NT]		[NT]	[NT]	20/06/2019	
Date analysed	-			21/06/2019	[NT]		[NT]	[NT]	21/06/2019	
Arsenic	mg/kg	4	Metals-020	<4	[NT]		[NT]	[NT]	114	
Cadmium	mg/kg	0.4	Metals-020	<0.4	[NT]		[NT]	[NT]	109	
Chromium	mg/kg	1	Metals-020	<1	[NT]		[NT]	[NT]	112	
Copper	mg/kg	1	Metals-020	<1	[NT]		[NT]	[NT]	109	
Lead	mg/kg	1	Metals-020	<1	[NT]		[NT]	[NT]	111	
Mercury	mg/kg	0.1	Metals-021	<0.1	[NT]		[NT]	[NT]	93	
Nickel	mg/kg	1	Metals-020	<1	[NT]		[NT]	[NT]	105	
Zinc	mg/kg	1	Metals-020	<1	[NT]		[NT]	[NT]	109	

QUALITY CC	Duplicate				Spike Recovery %					
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-8	[NT]
Date extracted	-			27/06/2019	[NT]			[NT]	27/06/2019	
Date analysed	-			28/06/2019	[NT]			[NT]	28/06/2019	
Tributyltin as Sn	µg/kg	0.5	Ext-054	<0.5	[NT]			[NT]	111	
Surrogate Triphenyltin	%		Ext-054	100	[NT]			[NT]	100	

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Control Definitions									
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.								
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.								
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.								
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.								
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.								
Australian Drinking	Water Guidelines recommend that Thermotolerant Coliform Faecal Enterococci. & E Coli levels are less than								

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Report Comments

Asbestos: A portion of the supplied sample was sub-sampled for asbestos analysis according to Envirolab procedures. We cannot guarantee that this sub-sample is indicative of the entire sample. Envirolab recommends supplying 40-50g of sample in its own container.

Note: Sample 218969-A-9 was sub-sampled from a jar provided by the client.

Organotins analysed by MPL. Report no. 228753

Zoic Environmental Pty Ltd Suite 1, Level 9, 189 Kent Street Sydney NSW 2000

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Attention:

Tyler Creese

Report Project name Received Date **659866-S** SOIL ANALYSIS Jun 05, 2019

Client Sample ID			TRIP-1
Sample Matrix			Soil
Eurofins mgt Sample No.			S19-Jn08327
Date Sampled			Jun 04, 2019
Test/Reference	LOR	Unit	,
BTEX	LOIR	Onit	
Benzene	0.1	mg/kg	< 0.1
Toluene	0.1	mg/kg	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2
o-Xylene	0.1	mg/kg	< 0.1
Xylenes - Total	0.3	mg/kg	< 0.3
4-Bromofluorobenzene (surr.)	1	%	105
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions		
Naphthalene ^{N02}	0.5	mg/kg	< 0.5
TRH C6-C10	20	mg/kg	< 20
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	< 20
TRH >C10-C16	50	mg/kg	< 50
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50
TRH >C16-C34	100	mg/kg	< 100
TRH >C34-C40	100	mg/kg	< 100
TRH >C10-C40 (total)*	100	mg/kg	< 100
Total Recoverable Hydrocarbons	Ľ		
TRH C6-C9	20	mg/kg	< 20
Total Recoverable Hydrocarbons - 1999 NEPM	Fractions		
TRH C10-C14	20	mg/kg	< 20
TRH C15-C28	50	mg/kg	< 50
TRH C29-C36	50	mg/kg	< 50
TRH C10-36 (Total)	50	mg/kg	< 50
Polycyclic Aromatic Hydrocarbons	L.		
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2
Acenaphthene	0.5	mg/kg	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5
Anthracene	0.5	mg/kg	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5
Chrysene	0.5	mg/kg	< 0.5

Client Sample ID Sample Matrix			TRIP-1 Soil
Eurofins mgt Sample No.			S19-Jn08327
Date Sampled			Jun 04, 2019
Test/Reference	LOR	Unit	
Polycyclic Aromatic Hydrocarbons			
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5
Fluoranthene	0.5	mg/kg	< 0.5
Fluorene	0.5	mg/kg	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5
Naphthalene	0.5	mg/kg	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5
Pyrene	0.5	mg/kg	< 0.5
Total PAH*	0.5	mg/kg	< 0.5
2-Fluorobiphenyl (surr.)	1	%	132
p-Terphenyl-d14 (surr.)	1	%	140
Heavy Metals			
Arsenic	2	mg/kg	4.6
Cadmium	0.4	mg/kg	< 0.4
Chromium	5	mg/kg	17
Copper	5	mg/kg	34
Lead	5	mg/kg	36
Mercury	0.1	mg/kg	< 0.1
Nickel	5	mg/kg	8.8
Zinc	5	mg/kg	60
TributyItin (TBT)			see attached
% Moisture	1	%	15

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported. A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description BTEX	Testing Site Sydney	Extracted Jun 14, 2019	Holding Time 14 Day
- Method: LTM-ORG-2150 VOCs in Soils Liquid and other Aqueous Matrices			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Jun 14, 2019	14 Day
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Jun 14, 2019	
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons	Sydney	Jun 14, 2019	14 Day
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Sydney	Jun 14, 2019	14 Day
- Method: LTM-ORG-2010 TRH C6-C40			
Polycyclic Aromatic Hydrocarbons	Sydney	Jun 14, 2019	14 Days
- Method: LTM-ORG-2130 PAH and Phenols in Soil and Water			
Metals M8	Sydney	Jun 14, 2019	180 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			
% Moisture	Sydney	Jun 07, 2019	14 Day
- Method: LTM-GEN-7080 Moisture			

	euro	ofins	mgt			ABN – e.mail web : v	50 005 : Enviro www.eu	085 52 Sales@ rofins.co	Melbourne 6 Monterey Road Dandenong South VIC 317 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271	Sydney Unit F3, Building F 5 16 Mars Road Lane Cove West NSW 206 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217	NATA # 1261 Site # 20794	Perth 2/91 Leach Highway Kewdale WA 6105 Phone : +61 8 9251 9600 NATA # 1261 Site # 23736
Company Name: Zoic Environmental Pty Ltd Address: Suite 1, Level 9, 189 Kent Street Sydney NSW 2000					Re Ph	rder N eport = none: ax:	659866 02 9251 8070	Recei Due: Priori Conta	Jun 17,			
Pro	ject Name:	SOIL ANALY	ŚIŚ							Eurofins mgt	Analytical Services Ma	nager : Andrew Black
		Sa	mple Detail			Tributyltin (TBT)	Moisture Set	Eurofins mgt Suite B7				
	ourne Laborato			271								
	ey Laboratory						X	X				
Brisbane Laboratory - NATA Site # 20794												
Perth Laboratory - NATA Site # 23736				x								
No	rnal Laboratory Sample ID	Sample Date	Sampling Time	Matrix	LAB ID	~						
1	TRIP-1	Jun 04, 2019		Soil	S19-Jn08327	Х	x	x				
	Counts		I	1	1	1	1	1				

Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure, April 2011 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds.
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days. **NOTE: pH duplicates are reported as a range NOT as RPD

> ug/L: micrograms per litre %: Percentage

MPN/100mL: Most Probable Number of organisms per 100 millilitres

Units

mg/kg: milligrams per kilogram	mg/L: milligrams per litre
ppm: Parts per million	ppb: Parts per billion
org/100mL: Organisms per 100 millilitres	NTU: Nephelometric Turbidity Units

Terms

re	rms	
Dry	,	Where a moisture has been determined on a solid sample the result is expressed on a dry basis.
LO	R	Limit of Reporting.
SP	KE	Addition of the analyte to the sample and reported as percentage recovery.
RP	D	Relative Percent Difference between two Duplicate pieces of analysis.
LC	S	Laboratory Control Sample - reported as percent recovery.
CR	M	Certified Reference Material - reported as percent recovery.
Met	thod Blank	In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.
Sur	r - Surrogate	The addition of a like compound to the analyte target and reported as percentage recovery.
Du	plicate	A second piece of analysis from the same sample and reported in the same units as the result to show comparison.
US	EPA	United States Environmental Protection Agency
AP	HA	American Public Health Association
тс	LP	Toxicity Characteristic Leaching Procedure
со	С	Chain of Custody
SR	Α	Sample Receipt Advice
QS	M	US Department of Defense Quality Systems Manual Version 5.2 2018
СР		Client Parent - QC was performed on samples pertaining to this report
NC	Р	Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.
TE	2	Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 50-150%-Phenols & PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.2 where no positive PFAS results have been reported have been reviewed and no data was affected.

WA DWER (n=10): PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Method Blank			· · · · ·			
BTEX						
Benzene	mg/kg	< 0.1		0.1	Pass	
Toluene	mg/kg	< 0.1		0.1	Pass	
Ethylbenzene	mg/kg	< 0.1		0.1	Pass	
m&p-Xylenes	mg/kg	< 0.2		0.2	Pass	
o-Xylene	mg/kg	< 0.1		0.1	Pass	
Xylenes - Total	mg/kg	< 0.3		0.3	Pass	
Method Blank			и и	4		
Total Recoverable Hydrocarbons - 2013 NEPM Fra	actions					
Naphthalene	mg/kg	< 0.5		0.5	Pass	
TRH C6-C10	mg/kg	< 20		20	Pass	
TRH >C10-C16	mg/kg	< 50		50	Pass	
TRH >C16-C34	mg/kg	< 100		100	Pass	
TRH >C34-C40	mg/kg	< 100		100	Pass	
Method Blank			I			
Total Recoverable Hydrocarbons						
TRH C6-C9	mg/kg	< 20		20	Pass	
Method Blank		- 20			1 400	
Total Recoverable Hydrocarbons - 1999 NEPM Fra	octions					
TRH C10-C14	mg/kg	< 20		20	Pass	
TRH C15-C28	mg/kg	< 50		50	Pass	
TRH C29-C36	mg/kg	< 50		50	Pass	
Method Blank	ilig/kg			30	1 855	
Polycyclic Aromatic Hydrocarbons				1		
Acenaphthene	mg/kg	< 0.5		0.5	Pass	
Acenaphthylene	mg/kg	< 0.5		0.5	Pass	
Anthracene	mg/kg	< 0.5		0.5	Pass	
		< 0.5		0.5	Pass	
Benz(a)anthracene	mg/kg	< 0.5		0.5	Pass	
Benzo(a)pyrene Benzo(b&j)fluoranthene	mg/kg mg/kg	< 0.5		0.5	Pass	
Benzo(g.h.i)perylene	mg/kg	< 0.5		0.5	Pass	
Benzo(k)fluoranthene		< 0.5		0.5	Pass	
	mg/kg	< 0.5		0.5	Pass	
Chrysene	mg/kg	1				
Dibenz(a.h)anthracene	mg/kg	< 0.5		0.5	Pass	
Fluoranthene	mg/kg	< 0.5		0.5	Pass	
Fluorene	mg/kg	< 0.5		0.5	Pass	
Indeno(1.2.3-cd)pyrene	mg/kg	< 0.5		0.5	Pass	
Naphthalene Phononthropo	mg/kg	< 0.5		0.5	Pass	
Phenanthrene	mg/kg	< 0.5		0.5	Pass	
Pyrene Mathad Blank	mg/kg	< 0.5		0.5	Pass	
Method Blank						
Heavy Metals				-	Date	
Arsenic	mg/kg	< 2		2	Pass	
Cadmium	mg/kg	< 0.4		0.4	Pass	
Chromium	mg/kg	< 5	<u> </u>	5	Pass	
Copper	mg/kg	< 5		5	Pass	
Lead	mg/kg	< 5		5	Pass	
Mercury	mg/kg	< 0.1		0.1	Pass	
Nickel	mg/kg	< 5		5	Pass	
Zinc	mg/kg	< 5		5	Pass	

Τε	est		Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
втех								
Benzene			%	90		70-130	Pass	
Toluene			%	90		70-130	Pass	
Ethylbenzene			%	94		70-130	Pass	
m&p-Xylenes			%	93		70-130	Pass	
o-Xylene			%	93		70-130	Pass	
Xylenes - Total			%	93		70-130	Pass	
LCS - % Recovery					. I			
Total Recoverable Hydrocarbo	ons - 2013 NEPM Fract	tions						
Naphthalene			%	113		70-130	Pass	
TRH C6-C10			%	82		70-130	Pass	
TRH >C10-C16			%	72		70-130	Pass	
LCS - % Recovery			/0				1 400	
Total Recoverable Hydrocarbo	ons							
TRH C6-C9	///5		%	85		70-130	Pass	
LCS - % Recovery			70	00		10 100	1 435	
Total Recoverable Hydrocarbo	ons - 1999 NEPM Fract	tions						
TRH C10-C14	713 - 1333 NEFIVI FIGU		%	70		70-130	Pass	
LCS - % Recovery			/0	10		70-130	газэ	
Polycyclic Aromatic Hydrocar	bons							
Acenaphthene	00115		%	88		70-130	Pass	
Acenaphthylene			%	89		70-130	Pass	
Anthracene			%	89		70-130	Pass	
			%	86			Pass	
Benz(a)anthracene						70-130		
Benzo(a)pyrene			%	85		70-130	Pass	
Benzo(b&j)fluoranthene			%	87		70-130	Pass	
Benzo(g.h.i)perylene			%	87		70-130	Pass	
Benzo(k)fluoranthene			%	87		70-130	Pass	
Chrysene			%	88		70-130	Pass	
Dibenz(a.h)anthracene			%	85		70-130	Pass	
Fluoranthene			%	89		70-130	Pass	
Fluorene			%	89		70-130	Pass	
Indeno(1.2.3-cd)pyrene			%	85		70-130	Pass	
Naphthalene			%	88		70-130	Pass	
Phenanthrene			%	88		70-130	Pass	
Pyrene			%	89		70-130	Pass	
LCS - % Recovery							1	
Heavy Metals								
Arsenic			%	106		70-130	Pass	
Cadmium			%	107		70-130	Pass	
Chromium			%	106		70-130	Pass	
Copper			%	108		70-130	Pass	
Lead			%	110		70-130	Pass	
Mercury			%	104		70-130	Pass	
Nickel			%	105		70-130	Pass	
Zinc		1	%	107		70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery								
ВТЕХ				Result 1				
Benzene	S19-Jn08327	CP	%	91		70-130	Pass	
Toluene	S19-Jn08327	CP	%	94		70-130	Pass	
Ethylbenzene	S19-Jn08327	CP	%	95		70-130	Pass	
m&p-Xylenes	S19-Jn08327	СР	%	96		70-130	Pass	
o-Xylene	S19-Jn08327	СР	%	95		70-130	Pass	

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Xylenes - Total	S19-Jn08327	CP	%	96			70-130	Pass	
Spike - % Recovery			1						
Total Recoverable Hydrocarbons -	2013 NEPM Fract	ions		Result 1					
Naphthalene	S19-Jn08327	CP	%	89			70-130	Pass	
TRH C6-C10	S19-Jn08327	CP	%	94			70-130	Pass	
TRH >C10-C16	S19-Jn15951	NCP	%	75			70-130	Pass	
Spike - % Recovery				1					
Total Recoverable Hydrocarbons				Result 1					
TRH C6-C9	S19-Jn08327	CP	%	93			70-130	Pass	
Spike - % Recovery									
Total Recoverable Hydrocarbons -	1999 NEPM Fract	ions		Result 1					
TRH C10-C14	S19-Jn15951	NCP	%	73			70-130	Pass	
Spike - % Recovery									
Polycyclic Aromatic Hydrocarbons	5			Result 1					
Acenaphthene	S19-Jn14662	NCP	%	92			70-130	Pass	
Acenaphthylene	S19-Jn14662	NCP	%	90			70-130	Pass	
Anthracene	S19-Jn14662	NCP	%	90			70-130	Pass	
Benz(a)anthracene	S19-Jn14662	NCP	%	86			70-130	Pass	
Benzo(a)pyrene	S19-Jn14662	NCP	%	87			70-130	Pass	
Benzo(b&j)fluoranthene	S19-Jn14662	NCP	%	82			70-130	Pass	
Benzo(g.h.i)perylene	S19-Jn14662	NCP	%	90			70-130	Pass	
Benzo(k)fluoranthene	S19-Jn14662	NCP	%	94			70-130	Pass	
Chrysene	S19-Jn14662	NCP	%	91			70-130	Pass	
Dibenz(a.h)anthracene	S19-Jn14662	NCP	%	88			70-130	Pass	
Fluoranthene	S19-Jn14662	NCP	%	92			70-130	Pass	
Fluorene	S19-Jn14662	NCP	%	91			70-130	Pass	
Indeno(1.2.3-cd)pyrene	S19-Jn14662	NCP	%	89			70-130	Pass	
Naphthalene	S19-Jn14662	NCP	%	89			70-130	Pass	
Phenanthrene	S19-Jn14662	NCP	%	91			70-130	Pass	
Pyrene	S19-Jn14662	NCP	%	92			70-130	Pass	
Spike - % Recovery									
Heavy Metals				Result 1					
Arsenic	S19-Jn16292	NCP	%	115			70-130	Pass	
Cadmium	S19-Jn16292	NCP	%	103			70-130	Pass	
Chromium	S19-Jn16292	NCP	%	115			70-130	Pass	
Copper	S19-Jn16292	NCP	%	100			70-130	Pass	
Lead	S19-Jn16292	NCP	%	99			70-130	Pass	
Mercury	S19-Jn16292	NCP	%	97			70-130	Pass	
Nickel	S19-Jn16292	NCP	%	103			70-130	Pass	
Zinc	S19-Jn16292	NCP	%	100			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate					·				
BTEX				Result 1	Result 2	RPD			
Benzene	S19-Jn10938	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Toluene	S19-Jn10938	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Ethylbenzene	S19-Jn10938	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
m&p-Xylenes	S19-Jn10938	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
o-Xylene	S19-Jn10938	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Xylenes - Total	S19-Jn10938	NCP	mg/kg	< 0.3	< 0.3	<1	30%	Pass	

Duplicate								
Total Recoverable Hydrocarbo	ons - 2013 NEPM Fract	tions		Result 1	Result 2	RPD		
Naphthalene	S19-Jn10938	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass
TRH C6-C10	S19-Jn10938	NCP	mg/kg	< 20	< 20	<1	30%	Pass
TRH >C10-C16	S19-Jn15950	NCP	mg/kg	< 50	< 50	<1	30%	Pass
TRH >C16-C34	S19-Jn15950	NCP	mg/kg	130	120	6.0	30%	Pass
TRH >C34-C40	S19-Jn15950	NCP	mg/kg	< 100	< 100	<1	30%	Pass
Duplicate								
Fotal Recoverable Hydrocarbo	ons			Result 1	Result 2	RPD		
TRH C6-C9	S19-Jn10938	NCP	mg/kg	< 20	< 20	<1	30%	Pass
Duplicate								
Fotal Recoverable Hydrocarbo	ons - 1999 NEPM Fract	tions		Result 1	Result 2	RPD		
TRH C10-C14	S19-Jn15950	NCP	mg/kg	< 20	< 20	<1	30%	Pass
TRH C15-C28	S19-Jn15950	NCP	mg/kg	76	67	12	30%	Pass
TRH C29-C36	S19-Jn15950	NCP	mg/kg	74	75	<1	30%	Pass
Duplicate				, ··				
Polycyclic Aromatic Hydrocarl	bons			Result 1	Result 2	RPD		
Acenaphthene	S19-Jn08327	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass
Acenaphthylene	S19-Jn08327	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass
Anthracene	S19-Jn08327	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass
Benz(a)anthracene	S19-Jn08327	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass
Benzo(a)pyrene	S19-Jn08327	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass
Benzo(b&j)fluoranthene	S19-Jn08327	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass
Benzo(g.h.i)perylene	S19-Jn08327	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass
Benzo(k)fluoranthene	S19-Jn08327	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass
Chrysene	S19-Jn08327	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass
Dibenz(a.h)anthracene	S19-Jn08327	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass
Fluoranthene	S19-Jn08327	CP		< 0.5	< 0.5	<1	30%	Pass
Fluorene	S19-Jn08327	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass
		CP	mg/kg					
Indeno(1.2.3-cd)pyrene	S19-Jn08327		mg/kg	< 0.5	< 0.5	<1	30%	Pass
Naphthalene	S19-Jn08327	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass
Phenanthrene	S19-Jn08327	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass
Pyrene	S19-Jn08327	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass
Duplicate				Desilit	Devilio			1
Heavy Metals	040 1:45000	NOD		Result 1	Result 2	RPD	0.001	
Arsenic	S19-Jn15989	NCP	mg/kg	5.4	3.3	<1	30%	Pass
Cadmium	S19-Jn15989	NCP	mg/kg	< 0.4	< 0.4	<1	30%	Pass
Chromium	S19-Jn15989	NCP	mg/kg	11	10	5.0	30%	Pass
Copper	S19-Jn15989	NCP	mg/kg	53	42	<1	30%	Pass
Lead	S19-Jn15989	NCP	mg/kg	60	37	<1	30%	Pass
Mercury	S19-Jn15989	NCP	mg/kg	0.2	0.2	1.0	30%	Pass
Nickel	S19-Jn15989	NCP	mg/kg	11	8.1	<1	30%	Pass
Zinc	S19-Jn15989	NCP	mg/kg	59	44	<1	30%	Pass
Duplicate				1 -				
				Result 1	Result 2	RPD		<u> </u>
% Moisture	S19-Jn07774	NCP	%	16	18	10	30%	Pass

Comments

Sample Integrity	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	Yes

mgt

Qualifier Codes/Comments

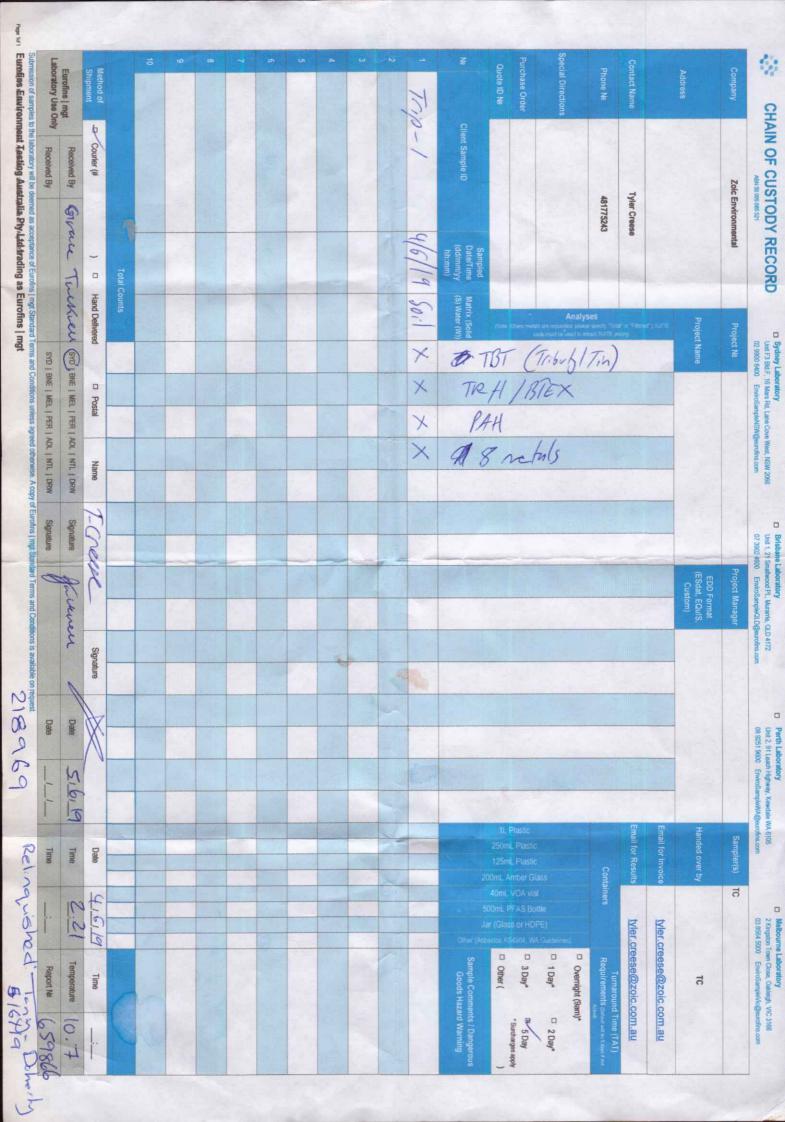
Code Description

N01	F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis).
N02	Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.
N04	F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes.
N07	Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs

Authorised By

Andrew Black Andrew Sullivan Gabriele Cordero Analytical Services Manager Senior Analyst-Organic (NSW) Senior Analyst-Metal (NSW)

Glenn Jackson General Manager


Final report - this Report replaces any previously issued Report

- Indicates Not Requested

* Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins | mgt shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins | mgt be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Melbourne

Sydney Unit F3, Building F
 Melbourne
 Sydney

 6 Monterey Road
 Unit F3, Building F

 Dandenong South Vic 3175
 16 Mars Road

 Phone : +61 3 8564 5000
 Lane Cove West NSW 2066

 NATA # 1261
 Phone : +61 2 9900 8400

 Site # 1254 & 14271
 NATA # 1261 Site # 18217

Brishane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

web : www.eurofins.com.au

Perth 2/91 Leach Highway Kewdale WA 6105 Phone : +61 8 9251 9600 NATA # 1261 Site # 23736

ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com

Sample Receipt Advice

Zoic Environmental Pty Ltd
Tyler Creese
SOIL ANALYSIS
Not provided
7 Day
Jun 5, 2019 2:21 PM
659866

Sample information

- A detailed list of analytes logged into our LIMS, is included in the attached summary table.
- All samples have been received as described on the above COC.
- COC has been completed correctly.
- \mathbf{V} Attempt to chill was evident.
- Appropriately preserved sample containers have been used.
- All samples were received in good condition.
- \mathbf{V} Samples have been provided with adequate time to commence analysis in accordance with the relevant holding times.
- Appropriate sample containers have been used.
- \boxtimes Split sample sent to requested external lab.
- Some samples have been subcontracted.
- N/A Custody Seals intact (if used).

Contact notes

If you have any questions with respect to these samples please contact:

Andrew Black on Phone : (+61) 2 9900 8490 or by e.mail: AndrewBlack@eurofins.com

Results will be delivered electronically via e.mail to Tyler Creese - tyler.creese@zoic.com.au.

38 Years of Environmental Analysis & Experience

CERTIFICATE OF ANALYSIS 219565

Client Details	
Client	Zoic Environmental
Attention	Tyler Creese
Address	Suite 1, Level 9, 189 Kent Street, Sydney, NSW, 2000

Sample Details	
Your Reference	18166 GME & Sediment
Number of Samples	5 WATER, 3 SOIL
Date samples received	13/06/2019
Date completed instructions received	13/06/2019

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details	
Date results requested by	21/06/2019
Date of Issue	24/06/2019
NATA Accreditation Number 290	1. This document shall not be reproduced except in full.
Accredited for compliance with IS	SO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *

Results Approved By Giovanni Agosti, Group Technical Manager Ken Nguyen, Reporting Supervisor Steven Luong, Organics Supervisor

Authorised By

Nancy Zhang, Laboratory Manager

Envirolab Reference: 219565 Revision No: R00

Page | 1 of 25

vTRH(C6-C10)/BTEXN in Soil				
Our Reference		219565-3	219565-4	219565-5
Your Reference	UNITS	SD-1	SD-2	SD-3
Date Sampled		13/06/2019	13/06/2019	13/06/2019
Type of sample		SOIL	SOIL	SOIL
Date extracted	-	17/06/2019	17/06/2019	17/06/2019
Date analysed	-	19/06/2019	19/06/2019	19/06/2019
TRH C ₆ - C ₉	mg/kg	<25	<25	<25
TRH C ₆ - C ₁₀	mg/kg	<25	<25	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1
Total +ve Xylenes	mg/kg	<3	<3	<3
Surrogate aaa-Trifluorotoluene	%	115	98	105

svTRH (C10-C40) in Soil				
Our Reference		219565-3	219565-4	219565-5
Your Reference	UNITS	SD-1	SD-2	SD-3
Date Sampled		13/06/2019	13/06/2019	13/06/2019
Type of sample		SOIL	SOIL	SOIL
Date extracted	-	17/06/2019	17/06/2019	17/06/2019
Date analysed	-	18/06/2019	18/06/2019	18/06/2019
TRH C ₁₀ - C ₁₄	mg/kg	98	310	<50
TRH C ₁₅ - C ₂₈	mg/kg	440	1,400	<100
TRH C ₂₉ - C ₃₆	mg/kg	330	890	<100
TRH >C10 -C16	mg/kg	65	210	<50
TRH >C10 - C16 less Naphthalene (F2)	mg/kg	65	210	<50
TRH >C ₁₆ -C ₃₄	mg/kg	670	2,000	<100
TRH >C ₃₄ -C ₄₀	mg/kg	210	560	<100
Total +ve TRH (>C10-C40)	mg/kg	950	2,800	<50
Surrogate o-Terphenyl	%	94	113	86

PAHs in Soil				
Our Reference		219565-3	219565-4	219565-5
Your Reference	UNITS	SD-1	SD-2	SD-3
Date Sampled		13/06/2019	13/06/2019	13/06/2019
Type of sample		SOIL	SOIL	SOIL
Date extracted	-	17/06/2019	17/06/2019	17/06/2019
Date analysed	-	18/06/2019	18/06/2019	18/06/2019
Naphthalene	mg/kg	<0.1	0.1	<0.1
Acenaphthylene	mg/kg	<0.1	0.2	<0.1
Acenaphthene	mg/kg	<0.1	0.4	<0.1
Fluorene	mg/kg	<0.1	0.1	<0.1
Phenanthrene	mg/kg	0.4	1.5	0.2
Anthracene	mg/kg	0.1	0.3	<0.1
Fluoranthene	mg/kg	0.8	2.4	0.9
Pyrene	mg/kg	1.2	2.3	0.9
Benzo(a)anthracene	mg/kg	0.5	1.1	0.6
Chrysene	mg/kg	0.6	1.2	0.6
Benzo(b,j+k)fluoranthene	mg/kg	0.9	2.3	1
Benzo(a)pyrene	mg/kg	0.56	1.3	0.72
Indeno(1,2,3-c,d)pyrene	mg/kg	0.3	0.7	0.4
Dibenzo(a,h)anthracene	mg/kg	<0.1	0.2	<0.1
Benzo(g,h,i)perylene	mg/kg	0.5	1	0.5
Total +ve PAH's	mg/kg	5.8	15	5.9
Benzo(a)pyrene TEQ calc (zero)	mg/kg	0.7	1.9	0.9
Benzo(a)pyrene TEQ calc(half)	mg/kg	0.8	1.9	1
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	0.8	1.9	1.0
Surrogate p-Terphenyl-d14	%	101	100	102

Acid Extractable metals in soil				
Our Reference		219565-3	219565-4	219565-5
Your Reference	UNITS	SD-1	SD-2	SD-3
Date Sampled		13/06/2019	13/06/2019	13/06/2019
Type of sample		SOIL	SOIL	SOIL
Date prepared	-	17/06/2019	17/06/2019	17/06/2019
Date analysed	-	17/06/2019	17/06/2019	17/06/2019
Arsenic	mg/kg	12	17	10
Cadmium	mg/kg	<0.4	1	<0.4
Chromium	mg/kg	61	150	17
Copper	mg/kg	10,000	19,000	570
Lead	mg/kg	920	280	130
Mercury	mg/kg	0.8	1.8	1.6
Nickel	mg/kg	27	75	5
Zinc	mg/kg	7,500	6,300	260

Moisture				
Our Reference		219565-3	219565-4	219565-5
Your Reference	UNITS	SD-1	SD-2	SD-3
Date Sampled		13/06/2019	13/06/2019	13/06/2019
Type of sample		SOIL	SOIL	SOIL
Date prepared	-	17/06/2019	17/06/2019	17/06/2019
Date analysed	-	18/06/2019	18/06/2019	18/06/2019
Moisture	%	40	50	32

Organotin Compounds				
Our Reference		219565-3	219565-4	219565-5
Your Reference	UNITS	SD-1	SD-2	SD-3
Date Sampled		13/06/2019	13/06/2019	13/06/2019
Type of sample		SOIL	SOIL	SOIL
Date extracted	-	21/06/2019	21/06/2019	21/06/2019
Date analysed	-	22/06/2019	22/06/2019	22/06/2019
Tributyltin as Sn	µg/kg	36,000	52,000	4,900
Surrogate Triphenyltin	%	100	100	100

vTRH(C6-C10)/BTEXN in Water						
Our Reference		219565-1	219565-2	219565-6	219565-7	219565-8
Your Reference	UNITS	MW01	MW02	DUP-2	ТВ	TS
Date Sampled		13/06/2019	13/06/2019	13/06/2019	13/06/2019	13/06/2019
Type of sample		WATER	WATER	WATER	WATER	WATER
Date extracted	-	17/06/2019	17/06/2019	17/06/2019	17/06/2019	17/06/2019
Date analysed	-	18/06/2019	18/06/2019	18/06/2019	18/06/2019	18/06/2019
TRH C ₆ - C ₉	µg/L	<10	130	120	<10	[NA]
TRH C ₆ - C ₁₀	µg/L	<10	170	170	<10	[NA]
TRH C ₆ - C ₁₀ less BTEX (F1)	µg/L	<10	70	74	<10	[NA]
Benzene	µg/L	<1	7	7	<1	97%
Toluene	µg/L	<1	43	40	<1	100%
Ethylbenzene	µg/L	<1	6	6	<1	99%
m+p-xylene	µg/L	<2	30	27	<2	97%
o-xylene	µg/L	<1	18	17	<1	95%
Naphthalene	µg/L	<1	<1	<1	<1	[NA]
Surrogate Dibromofluoromethane	%	108	106	106	106	109
Surrogate toluene-d8	%	99	98	97	99	100
Surrogate 4-BFB	%	101	101	102	95	101

svTRH (C10-C40) in Water				
Our Reference		219565-1	219565-2	219565-6
Your Reference	UNITS	MW01	MW02	DUP-2
Date Sampled		13/06/2019	13/06/2019	13/06/2019
Type of sample		WATER	WATER	WATER
Date extracted	-	17/06/2019	17/06/2019	17/06/2019
Date analysed	-	18/06/2019	18/06/2019	18/06/2019
TRH C ₁₀ - C ₁₄	µg/L	<50	200	170
TRH C ₁₅ - C ₂₈	µg/L	<100	170	110
TRH C ₂₉ - C ₃₆	µg/L	<100	<100	<100
TRH >C ₁₀ - C ₁₆	µg/L	<50	190	140
TRH >C10 - C16 less Naphthalene (F2)	µg/L	<50	190	140
TRH >C ₁₆ - C ₃₄	µg/L	<100	140	<100
TRH >C ₃₄ - C ₄₀	µg/L	<100	<100	<100
Surrogate o-Terphenyl	%	93	111	97

PAHs in Water				
Our Reference		219565-1	219565-2	219565-6
Your Reference	UNITS	MW01	MW02	DUP-2
Date Sampled		13/06/2019	13/06/2019	13/06/2019
Type of sample		WATER	WATER	WATER
Date extracted	-	17/06/2019	17/06/2019	17/06/2019
Date analysed	-	18/06/2019	18/06/2019	18/06/2019
Naphthalene	μg/L	<1	<1	<1
Acenaphthylene	μg/L	<1	<1	<1
Acenaphthene	μg/L	<1	<1	<1
Fluorene	µg/L	<1	<1	<1
Phenanthrene	μg/L	<1	<1	<1
Anthracene	μg/L	<1	<1	<1
Fluoranthene	μg/L	<1	<1	<1
Pyrene	μg/L	<1	<1	<1
Benzo(a)anthracene	μg/L	<1	<1	<1
Chrysene	μg/L	<1	<1	<1
Benzo(b,j+k)fluoranthene	μg/L	<2	<2	<2
Benzo(a)pyrene	μg/L	<1	<1	<1
Indeno(1,2,3-c,d)pyrene	μg/L	<1	<1	<1
Dibenzo(a,h)anthracene	µg/L	<1	<1	<1
Benzo(g,h,i)perylene	μg/L	<1	<1	<1
Benzo(a)pyrene TEQ	µg/L	<5	<5	<5
Total +ve PAH's	μg/L	NIL (+)VE	NIL (+)VE	NIL (+)VE
Surrogate p-Terphenyl-d14	%	99	93	90

HM in water - dissolved				
Our Reference		219565-1	219565-2	219565-6
Your Reference	UNITS	MW01	MW02	DUP-2
Date Sampled		13/06/2019	13/06/2019	13/06/2019
Type of sample		WATER	WATER	WATER
Date prepared	-	17/06/2019	17/06/2019	17/06/2019
Date analysed	-	17/06/2019	17/06/2019	17/06/2019
Arsenic-Dissolved	µg/L	<1	7	7
Cadmium-Dissolved	µg/L	0.8	<0.1	<0.1
Chromium-Dissolved	µg/L	1	7	7
Copper-Dissolved	µg/L	22	4	6
Lead-Dissolved	µg/L	2	<1	<1
Mercury-Dissolved	µg/L	<0.05	0.40	0.40
Nickel-Dissolved	µg/L	4	6	8
Zinc-Dissolved	µg/L	66	5	22

Method ID	Methodology Summary
Ext-054	Analysed by MPL Envirolab
Inorg-008	Moisture content determined by heating at 105+/-5 °C for a minimum of 12 hours.
Metals-020	Determination of various metals by ICP-AES.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Metals-022	Determination of various metals by ICP-MS.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
	Note, the Total +ve TRH PQL is reflective of the lowest individual PQL and is therefore "Total +ve TRH" is simply a sum of the positive individual TRH fractions (>C10-C40).
Org-012	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013.
Org-012	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013. For soil results:-
	 1. 'EQ PQL'values are assuming all contributing PAHs reported as <pql actually="" and="" approach="" are="" at="" be="" calculation="" can="" conservative="" contribute="" false="" give="" given="" is="" li="" may="" most="" not="" pahs="" positive="" pql.="" present.<="" teq="" teqs="" that="" the="" this="" to=""> 2. 'EQ zero'values are assuming all contributing PAHs reported as <pql and="" approach="" are="" below="" but="" calculation="" conservative="" contribute="" false="" is="" least="" li="" more="" negative="" pahs="" pql.<="" present="" susceptible="" teq="" teqs="" that="" the="" this="" to="" when="" zero.=""> 3. 'EQ half PQL'values are assuming all contributing PAHs reported as <pql "total="" +ve="" a="" above.="" and="" approaches="" are="" between="" conservative="" half="" hence="" individual="" is="" least="" li="" lowest="" mid-point="" most="" note,="" of="" pahs="" pahs"="" pahs.<="" positive="" pql="" pql.="" reflective="" simply="" stipulated="" sum="" the="" therefore="" total=""> </pql></pql></pql>
Org-013	Water samples are analysed directly by purge and trap GC-MS.
Org-014	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.

Method ID	Methodology Summary
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater. Note, the Total +ve Xylene PQL is reflective of the lowest individual PQL and is therefore "Total +ve Xylenes" is simply a sum of the positive individual Xylenes.

QUALITY CONT	ROL: vTRH	(C6-C10)	/BTEXN in Soil			Du	plicate		Spike Rec	overy %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-3	[NT]
Date extracted	-			17/06/2019	[NT]		[NT]	[NT]	17/06/2019	
Date analysed	-			19/06/2019	[NT]		[NT]	[NT]	19/06/2019	
TRH C ₆ - C ₉	mg/kg	25	Org-016	<25	[NT]		[NT]	[NT]	94	
TRH C ₆ - C ₁₀	mg/kg	25	Org-016	<25	[NT]		[NT]	[NT]	94	
Benzene	mg/kg	0.2	Org-016	<0.2	[NT]		[NT]	[NT]	109	
Toluene	mg/kg	0.5	Org-016	<0.5	[NT]		[NT]	[NT]	94	
Ethylbenzene	mg/kg	1	Org-016	<1	[NT]		[NT]	[NT]	88	
m+p-xylene	mg/kg	2	Org-016	<2	[NT]		[NT]	[NT]	90	
o-Xylene	mg/kg	1	Org-016	<1	[NT]		[NT]	[NT]	88	
naphthalene	mg/kg	1	Org-014	<1	[NT]		[NT]	[NT]	[NT]	
Surrogate aaa-Trifluorotoluene	%		Org-016	108	[NT]		[NT]	[NT]	108	

QUALITY CO	NTROL: svT	RH (C10-	-C40) in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-3	[NT]
Date extracted	-			17/06/2019	[NT]		[NT]	[NT]	17/06/2019	
Date analysed	-			17/06/2019	[NT]		[NT]	[NT]	18/06/2019	
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-003	<50	[NT]		[NT]	[NT]	118	
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-003	<100	[NT]		[NT]	[NT]	120	
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-003	<100	[NT]		[NT]	[NT]	114	
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-003	<50	[NT]		[NT]	[NT]	118	
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-003	<100	[NT]		[NT]	[NT]	120	
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-003	<100	[NT]		[NT]	[NT]	114	
Surrogate o-Terphenyl	%		Org-003	130	[NT]	[NT]	[NT]	[NT]	72	[NT]

QUALI	TY CONTRC	L: PAHs	in Soil			Du	plicate		Spike Rec	overy %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-3	[NT]
Date extracted	-			17/06/2019	[NT]		[NT]	[NT]	17/06/2019	
Date analysed	-			18/06/2019	[NT]		[NT]	[NT]	18/06/2019	
Naphthalene	mg/kg	0.1	Org-012	<0.1	[NT]		[NT]	[NT]	106	
Acenaphthylene	mg/kg	0.1	Org-012	<0.1	[NT]		[NT]	[NT]	[NT]	
Acenaphthene	mg/kg	0.1	Org-012	<0.1	[NT]		[NT]	[NT]	[NT]	
Fluorene	mg/kg	0.1	Org-012	<0.1	[NT]		[NT]	[NT]	95	
Phenanthrene	mg/kg	0.1	Org-012	<0.1	[NT]		[NT]	[NT]	96	
Anthracene	mg/kg	0.1	Org-012	<0.1	[NT]		[NT]	[NT]	[NT]	
Fluoranthene	mg/kg	0.1	Org-012	<0.1	[NT]		[NT]	[NT]	93	
Pyrene	mg/kg	0.1	Org-012	<0.1	[NT]		[NT]	[NT]	97	
Benzo(a)anthracene	mg/kg	0.1	Org-012	<0.1	[NT]		[NT]	[NT]	[NT]	
Chrysene	mg/kg	0.1	Org-012	<0.1	[NT]		[NT]	[NT]	98	
Benzo(b,j+k)fluoranthene	mg/kg	0.2	Org-012	<0.2	[NT]		[NT]	[NT]	[NT]	
Benzo(a)pyrene	mg/kg	0.05	Org-012	<0.05	[NT]		[NT]	[NT]	97	
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-012	<0.1	[NT]		[NT]	[NT]	[NT]	
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-012	<0.1	[NT]		[NT]	[NT]	[NT]	
Benzo(g,h,i)perylene	mg/kg	0.1	Org-012	<0.1	[NT]		[NT]	[NT]	[NT]	
Surrogate p-Terphenyl-d14	%		Org-012	106	[NT]		[NT]	[NT]	103	

QUALITY CONT	ROL: Acid E	Extractable	e metals in soil			Du	plicate		Spike Red	overy %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-3	[NT]
Date prepared	-			17/06/2019	[NT]		[NT]	[NT]	17/06/2019	
Date analysed	-			17/06/2019	[NT]		[NT]	[NT]	17/06/2019	
Arsenic	mg/kg	4	Metals-020	<4	[NT]		[NT]	[NT]	110	
Cadmium	mg/kg	0.4	Metals-020	<0.4	[NT]		[NT]	[NT]	106	
Chromium	mg/kg	1	Metals-020	<1	[NT]		[NT]	[NT]	108	
Copper	mg/kg	1	Metals-020	<1	[NT]		[NT]	[NT]	108	
Lead	mg/kg	1	Metals-020	<1	[NT]		[NT]	[NT]	109	
Mercury	mg/kg	0.1	Metals-021	<0.1	[NT]		[NT]	[NT]	90	
Nickel	mg/kg	1	Metals-020	<1	[NT]		[NT]	[NT]	107	
Zinc	mg/kg	1	Metals-020	<1	[NT]		[NT]	[NT]	110	

QUALITY CC	ONTROL: Or	ganotin C	Compounds		Duplicate				Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-3	[NT]
Date extracted	-			21/06/2019	[NT]			[NT]	21/06/2019	
Date analysed	-			22/06/2019	[NT]			[NT]	22/06/2019	
Tributyltin as Sn	µg/kg	0.5	Ext-054	<0.5	[NT]			[NT]	105	
Surrogate Triphenyltin	%		Ext-054	100	[NT]	[NT]	[NT]	[NT]	103	[NT]

QUALITY CONT	ROL: vTRH(C6-C10)/E	3TEXN in Water			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date extracted	-			17/06/2019	6	17/06/2019	18/06/2019		17/06/2019	
Date analysed	-			19/06/2019	6	18/06/2019	19/06/2019		18/06/2019	
TRH C ₆ - C ₉	µg/L	10	Org-016	<10	6	120	140	15	95	
TRH C ₆ - C ₁₀	μg/L	10	Org-016	<10	6	170	170	0	95	
Benzene	μg/L	1	Org-016	<1	6	7	7	0	96	
Toluene	μg/L	1	Org-016	<1	6	40	42	5	88	
Ethylbenzene	μg/L	1	Org-016	<1	6	6	6	0	95	
m+p-xylene	μg/L	2	Org-016	<2	6	27	28	4	99	
o-xylene	μg/L	1	Org-016	<1	6	17	17	0	96	
Naphthalene	μg/L	1	Org-013	<1	6	<1	<1	0	[NT]	
Surrogate Dibromofluoromethane	%		Org-016	111	6	106	111	5	101	
Surrogate toluene-d8	%		Org-016	96	6	97	98	1	93	
Surrogate 4-BFB	%		Org-016	89	6	102	104	2	110	

QUALITY CON	ITROL: svTF	RH (C10-0	C40) in Water			Du	plicate		Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W4	219565-2
Date extracted	-			17/06/2019	1	17/06/2019	17/06/2019		17/06/2019	17/06/2019
Date analysed	-			18/06/2019	1	18/06/2019	18/06/2019		18/06/2019	18/06/2019
TRH C ₁₀ - C ₁₄	µg/L	50	Org-003	<50	1	<50	<50	0	77	99
TRH C ₁₅ - C ₂₈	µg/L	100	Org-003	<100	1	<100	<100	0	79	100
TRH C ₂₉ - C ₃₆	µg/L	100	Org-003	<100	1	<100	<100	0	81	100
TRH >C ₁₀ - C ₁₆	µg/L	50	Org-003	<50	1	<50	<50	0	77	99
TRH >C ₁₆ - C ₃₄	µg/L	100	Org-003	<100	1	<100	<100	0	79	100
TRH >C ₃₄ - C ₄₀	µg/L	100	Org-003	<100	1	<100	<100	0	81	100
Surrogate o-Terphenyl	%		Org-003	98	1	93	74	23	85	111

QUALITY	Y CONTROL	.: PAHs ir	Water			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	219565-2
Date extracted	-			17/06/2019	1	17/06/2019	17/06/2019		17/06/2019	17/06/2019
Date analysed	-			18/06/2019	1	18/06/2019	18/06/2019		18/06/2019	18/06/2019
Naphthalene	µg/L	1	Org-012	<1	1	<1	<1	0	90	94
Acenaphthylene	µg/L	1	Org-012	<1	1	<1	<1	0	[NT]	[NT]
Acenaphthene	µg/L	1	Org-012	<1	1	<1	<1	0	[NT]	[NT]
Fluorene	µg/L	1	Org-012	<1	1	<1	<1	0	78	96
Phenanthrene	µg/L	1	Org-012	<1	1	<1	<1	0	72	84
Anthracene	µg/L	1	Org-012	<1	1	<1	<1	0	[NT]	[NT]
Fluoranthene	µg/L	1	Org-012	<1	1	<1	<1	0	70	86
Pyrene	µg/L	1	Org-012	<1	1	<1	<1	0	72	90
Benzo(a)anthracene	µg/L	1	Org-012	<1	1	<1	<1	0	[NT]	[NT]
Chrysene	µg/L	1	Org-012	<1	1	<1	<1	0	70	90
Benzo(b,j+k)fluoranthene	µg/L	2	Org-012	<2	1	<2	<2	0	[NT]	[NT]
Benzo(a)pyrene	µg/L	1	Org-012	<1	1	<1	<1	0	70	86
Indeno(1,2,3-c,d)pyrene	µg/L	1	Org-012	<1	1	<1	<1	0	[NT]	[NT]
Dibenzo(a,h)anthracene	µg/L	1	Org-012	<1	1	<1	<1	0	[NT]	[NT]
Benzo(g,h,i)perylene	µg/L	1	Org-012	<1	1	<1	<1	0	[NT]	[NT]
Surrogate p-Terphenyl-d14	%		Org-012	70	1	99	74	29	78	93

QUALITY CC	NTROL: HN	1 in water	- dissolved			Du	plicate		Spike Red	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	[NT]
Date prepared	-			17/06/2019	[NT]		[NT]	[NT]	17/06/2019	
Date analysed	-			17/06/2019	[NT]		[NT]	[NT]	17/06/2019	
Arsenic-Dissolved	µg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	102	
Cadmium-Dissolved	µg/L	0.1	Metals-022	<0.1	[NT]		[NT]	[NT]	102	
Chromium-Dissolved	µg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	95	
Copper-Dissolved	µg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	101	
Lead-Dissolved	µg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	103	
Mercury-Dissolved	µg/L	0.05	Metals-021	<0.05	[NT]		[NT]	[NT]	111	
Nickel-Dissolved	µg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	102	
Zinc-Dissolved	µg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	102	

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Control	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.
Australian Drinking	Water Guidelines recommend that Thermotolerant Coliform Eaecal Enterococci. & E Coli levels are less than

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Report Comments

Organotins analysed by MPL. Report no. 228307

CHAIN OF CUSTODY - Client

iv)rolab

ENVIROLAB SERVICES

				/IKULA	IR 2CH	AICES	<u>* </u>													
Client:	Zoic Er	invironmental		Client Prr	oject Name	e and Numb	Jerr	18	3166 GP	AE & S	Sediment			virola						
Project Mgn	<u>. </u>	Tyler Creese		_								'	12 A	12 Ashley St, Chatswood, NSW, 2067						
ampler:		Edward Munnings		PO No.:	<u> </u>	18166						'	1							
ddress:	Suite 1, Level 9, 189 Kent Street, Sy	l 9, 189 Kent Street, Sydney NSW 2000 Envirolab Services Quote No. :																		
			uits required	-						1	Fax:		2 991							
mail:	edward.munnings@zoic.com.au;	, tyler.creese@zoic.cc	<u>)m.au</u>	Or choose	e: standard	シ						1	E-ma	ail: al	hie@@	envin	olabs	services.com.au		
hone:	9251807	70 Fax:		Note: Inforr	m lab in advar	nce if urgent tu	umaround	is requir	red -		surcharge ap	applies (Con	tact: A	Aileer	n Hie				
	Sample Infon					·		<u> </u>	Test	s Requ			J					Comments		
Envirolab Sample ID	Client Sample ID	Date sampled	Type of sample	Combo 3 (water)	Combo 3 (soll)	Tributyl Tin	BTEX, volatila TRH				Please send to Eurofins for TRH, BTEX, PAH, 8 Heavy Metals	MERTIN					-	Provide as much information about the sample as you can		
	MW01	13.06.2019	<u> </u>	X	<u> </u>		+			, <u> </u>			f				1			
3	MW02	13.06.2019	W	X			1	\square		· '			<u>t</u>				Ϊ			
3	SD-1	13.06.2019	S	<u> </u>	X	X		\square		· <u> </u>										
4	SD-2	13.06.2019	S		X	X	<u> </u>	\Box												
5	SD-3	_ 13.06.2019	S		X	X	<u> </u>	\Box				<u> </u>		·			ŀ			
6	DUP-2	13.06.2019	W	X	\Box '	<u>.</u>	<u> </u>	\Box		!										
7	TRIP-2	13.06.2019	W	'	<u> </u>		<u> </u>				X									
4	ТВ	13.06.2019	W	<u> </u>	<u> </u>		X			!	'									
48	TS	13.06.2019	W	<u> </u>	<u> </u>		X				ſ <u> </u>									
	l	'		<u> </u>	<u>['</u>		יי				<u> </u>	′								
	l	′		 '	<u> '</u>		<u>ب</u>			!		Endi	hans	rvice		<u> </u>				
	I	'		⊥ '	<u> '</u>		_ 	<u> </u>			VIRCLAR	,,	12 As	shiey S	<u>t </u>					
	l	′		<u> </u>	<u> </u>				Ĺ			Chatsw Ph.	Pod ws	10 620		Ι				
	l	′		 '	<u> '</u>			\square		!	101 No: 21	لمضا	ls-			[
	/	······································	<u></u>	↓ ′	<u> </u>		'لــــــــــــــــــــــــــــــــــــ	ĻШ				_				<u> </u>		ļ		
	I			 '	 '			<u> </u>		e'	ate Receive	::13/	06	19				[]		
		 '	<u> </u>	 '	↓ '		\downarrow	\square	\square		Tune Receive	ed:\6	131	<u> </u>	\square					
	ł	′	<u></u>	↓ ′	 '		+	\vdash	\square	#	Received by:	512	<u>}</u>	<u> </u>		<u> </u>	_			
	· · · ·	- '		 '	↓ ノ		\downarrow	\vdash		!	emp: 200VA	mblen	<u> </u>	<u> </u>			ļ	_		
		_ '	<u></u>	 '	↓ ′		4	ليسم		!	Cooling: Cel Security: (Inte	ioepery कित्तासल				 	<u> </u>	ļ		
	↓	_ _ '		↓ '	↓ _		┹╾┛	ب ا	_→		Security:(200					 	ļ		
		_ '	 `	 '	↓ /		╇┻┙	┝──┤	\vdash]	+ '	 '		\downarrow	 '	 _		<u></u>		
		'	 `	 '	\square		╉──┘	┍╾╾┥			↓ ′	∔′		\square	 	┠	 	<u> </u>		
	t	·		 '	┣━━━┛		┹	ب ا	┣──┤		 '	–_′	┣—	↓ !	 '	 	 			
	t	<u>-+'</u>	<u> </u> '	<u>+'</u>			╧╧╧┙			<u> </u>	<u>+</u> '	<u> </u> '	<u> </u>	╞══┙		<u> </u>	ļ			
				 /		<u> </u>	<u>t</u>	=		Ţ	<u> </u>		F		L	L÷-				
rint Name:		Zoic Environmental Edward Munnings	\overline{C}	Print Nam	ne: Say		Bol	HQ-	ń.	<u>}_</u>			Temp	erature	e Recie	eved at	ы1∖.	blent (circle one) 3 (if applicable)		
ate & Time	2 - Chain of Gustody Gliont, locued-14/02/	108 13,06,2019	6.1a D		,	06/19	<u> </u>	51	<u> </u>				Trans	ported	by: H	and de	livere	ed / courier		
Ignature:			2-3000	Signatures	<u></u>	1777			<u> </u>			′	ل					Page No:		

_

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

SAMPLE RECEIPT ADVICE

Client Details	
Client	Zoic Environmental
Attention	Tyler Creese

Sample Login Details	
Your reference	18166 GME & Sediment
Envirolab Reference	219565
Date Sample Received	13/06/2019
Date Instructions Received	13/06/2019
Date Results Expected to be Reported	21/06/2019

Sample Condition	
Samples received in appropriate condition for analysis	Yes
No. of Samples Provided	5 WATER, 3 SOIL
Turnaround Time Requested	Standard
Temperature on Receipt (°C)	11.3
Cooling Method	Ice
Sampling Date Provided	YES

Comments Nil

Please direct any queries to:

Aileen Hie	Jacinta Hurst
Phone: 02 9910 6200	Phone: 02 9910 6200
Fax: 02 9910 6201	Fax: 02 9910 6201
Email: ahie@envirolab.com.au	Email: jhurst@envirolab.com.au

Analysis Underway, details on the following page:

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

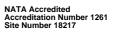
Sample ID	VTRH(C6-C10)/BTEXN in Soil	svTRH (C10-C40) in Soil	PAHs in Soil	Acid Extractable metalsin soil	Organotin Compounds	vTRH(C6-C10)/BTEXN in Water	svTRH (C10-C40) in Water	PAHsin Water	HM in water - dissolved
MW01						\checkmark	\checkmark	\checkmark	\checkmark
MW02						\checkmark	\checkmark	\checkmark	\checkmark
SD-1	\checkmark	✓	✓	\checkmark	\checkmark				
SD-2	\checkmark	✓	✓	\checkmark	\checkmark				
SD-3	1	\checkmark	\checkmark	\checkmark	\checkmark				
DUP-2						✓	✓	✓	✓
ТВ						\checkmark			
TS						✓			

The ' \checkmark ' indicates the testing you have requested. THIS IS NOT A REPORT OF THE RESULTS.

Additional Info

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.

Requests for longer term sample storage must be received in writing.


Please contact the laboratory immediately if observed settled sediment present in water samples is to be included in the extraction and/or analysis (exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, Total Recoverable metals and PFAS analysis where solids are included by default.

TAT for Micro is dependent on incubation. This varies from 3 to 6 days.

Zoic Environmental Pty Ltd Suite 1, Level 9, 189 Kent Street Sydney NSW 2000

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Attention:

Tyler Creese

Report Project name Received Date 661065-W 18166 GME & SEDIMENT Jun 14, 2019

Client Sample ID			TRIP-2
Sample Matrix			Water
Eurofins mgt Sample No.			S19-Jn17847
Date Sampled			Jun 13, 2019
Test/Reference	LOR	Unit	
Total Recoverable Hydrocarbons - 1999 NEPM	-		
TRH C6-C9	0.02	mg/L	0.12
TRH C10-C14	0.05	mg/L	0.08
TRH C15-C28	0.1	mg/L	0.3
TRH C29-C36	0.1	mg/L	0.2
TRH C10-36 (Total)	0.1	mg/L	0.58
BTEX	·		
Benzene	0.001	mg/L	0.006
Toluene	0.001	mg/L	0.039
Ethylbenzene	0.001	mg/L	0.005
m&p-Xylenes	0.002	mg/L	0.025
o-Xylene	0.001	mg/L	0.016
Xylenes - Total	0.003	mg/L	0.041
4-Bromofluorobenzene (surr.)	1	%	117
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions		
Naphthalene ^{N02}	0.01	mg/L	< 0.01
TRH C6-C10	0.02	mg/L	0.15
TRH C6-C10 less BTEX (F1) ^{N04}	0.02	mg/L	0.06
TRH >C10-C16	0.05	mg/L	0.11
TRH >C10-C16 less Naphthalene (F2) ^{N01}	0.05	mg/L	0.11
TRH >C16-C34	0.1	mg/L	0.4
TRH >C34-C40	0.1	mg/L	0.1
TRH >C10-C40 (total)*	0.1	mg/L	0.61
Polycyclic Aromatic Hydrocarbons			
Acenaphthene	0.001	mg/L	< 0.001
Acenaphthylene	0.001	mg/L	0.001
Anthracene	0.001	mg/L	0.001
Benz(a)anthracene	0.001	mg/L	0.001
Benzo(a)pyrene	0.001	mg/L	0.002
Benzo(b&j)fluoranthene ^{N07}	0.001	mg/L	0.002
Benzo(g.h.i)perylene	0.001	mg/L	0.002
Benzo(k)fluoranthene	0.001	mg/L	< 0.001
Chrysene	0.001	mg/L	0.001
Dibenz(a.h)anthracene	0.001	mg/L	< 0.001
Fluoranthene	0.001	mg/L	0.002
Fluorene	0.001	mg/L	< 0.001
Indeno(1.2.3-cd)pyrene	0.001	mg/L	0.001

Client Sample ID Sample Matrix Eurofins mgt Sample No.			TRIP-2 Water S19-Jn17847
Date Sampled			Jun 13, 2019
Test/Reference	LOR	Unit	
Polycyclic Aromatic Hydrocarbons			
Naphthalene	0.001	mg/L	< 0.001
Phenanthrene	0.001	mg/L	0.002
Pyrene	0.001	mg/L	0.002
Total PAH*	0.001	mg/L	0.017
2-Fluorobiphenyl (surr.)	1	%	110
p-Terphenyl-d14 (surr.)	1	%	89
Heavy Metals			
Arsenic (filtered)	0.001	mg/L	0.007
Cadmium (filtered)	0.0002	mg/L	< 0.0002
Chromium (filtered)	0.001	mg/L	0.010
Copper (filtered)	0.001	mg/L	0.004
Lead (filtered)	0.001	mg/L	< 0.001
Mercury (filtered)	0.0001	mg/L	0.0005
Nickel (filtered)	0.001	mg/L	0.007
Zinc (filtered)	0.005	mg/L	< 0.005

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported. A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Sydney	Jun 17, 2019	7 Days
- Method: LTM-ORG-2010 TRH C6-C40			
BTEX	Sydney	Jun 17, 2019	14 Days
- Method: LTM-ORG-2150 VOCs in Soils Liquid and other Aqueous Matrices			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Jun 17, 2019	7 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Jun 17, 2019	
- Method: LTM-ORG-2010 TRH C6-C40			
Polycyclic Aromatic Hydrocarbons	Sydney	Jun 17, 2019	7 Days
- Method: LTM-ORG-2130 PAH and Phenols in Soil and Water			
Metals M8 filtered	Sydney	Jun 17, 2019	28 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			

\$	euro	orins	mgt			ABN – { e.mail : web : w	50 005 085 521 EnviroSales@eurofins.cc ww.eurofins.com.au	m	Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271	Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217	Brisbane 1/21 Smallwood Murarrie QLD 4 Phone : +61 7 3 NATA # 1261 S	4172 3902 4600	Perth 2/91 Leach Highway Kewdale WA 6105 Phone : +61 8 9251 960 NATA # 1261 Site # 23736
Ado	mpany Name: dress:	Suite 1, Leve Sydney NSW 2000	mental Pty Lto	Street		Order No.: Report #: Phone: Fax:	1816 6610 02 92		Receive Due: Priority: Contact		Jun 14, 20 Jun 25, 20 7 Day Tyler Cree		
Pro	ject Name:	18166 GME	& SEDIMENT							Eurofins mgt A	nalytical Serv	vices Man	ager : Andrew Bla
		Sa	mple Detail			Eurofins mgt Suite B7 (filtered metals)							
		ory - NATA Site		71									
-		- NATA Site # 1				X							
		y - NATA Site #											
		ATA Site # 237	30										
No	nal Laboratory Sample ID	Sample Date	Sampling Time	Matrix	LAB ID								
1	TRIP-2	Jun 13, 2019		Water	S19-Jn17847	Х							
	Counts					1							

Internal Quality Control Review and Glossary

General

- Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site 1. Contamination) Measure, April 2011 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer, that may have an impact on the results.
- This report replaces any interim results previously issued. 9.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days. **NOTE: pH duplicates are reported as a range NOT as RPD

Units

mg/kg: milligrams per kilogram	mg/L: milligrams per litre	ug/L: micrograms per litre
ppm: Parts per million	ppb: Parts per billion	%: Percentage
org/100mL: Organisms per 100 millilitres	NTU: Nephelometric Turbidity Units	MPN/100mL: Most Probable Number of organisms per 100 millilitres

Where a moisture has been determined on a solid sample the result is expressed on a dry basis.
Limit of Reporting.
Addition of the analyte to the sample and reported as percentage recovery.
Relative Percent Difference between two Duplicate pieces of analysis.
Laboratory Control Sample - reported as percent recovery.
Certified Reference Material - reported as percent recovery.
In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.
The addition of a like compound to the analyte target and reported as percentage recovery.
A second piece of analysis from the same sample and reported in the same units as the result to show comparison.
United States Environmental Protection Agency
American Public Health Association
Toxicity Characteristic Leaching Procedure
Chain of Custody
Sample Receipt Advice
US Department of Defense Quality Systems Manual Version 5.2 2018
Client Parent - QC was performed on samples pertaining to this report
Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.
Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 50-150%-Phenols & PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.2 where no positive PFAS results have been reported have been reviewed and no data was affected

WA DWER (n=10): PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported 5. in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Method Blank			· · ·		
Total Recoverable Hydrocarbons - 1999 NEPM Fractio	ns				
TRH C6-C9	mg/L	< 0.02	0.02	Pass	
TRH C10-C14	mg/L	< 0.05	0.05	Pass	
TRH C15-C28	mg/L	< 0.1	0.1	Pass	
TRH C29-C36	mg/L	< 0.1	0.1	Pass	
Method Blank	Ŭ				
BTEX					
Benzene	mg/L	< 0.001	0.001	Pass	
Toluene	mg/L	< 0.001	0.001	Pass	
Ethylbenzene	mg/L	< 0.001	0.001	Pass	
m&p-Xylenes	mg/L	< 0.002	0.002	Pass	
o-Xylene	mg/L	< 0.001	0.001	Pass	
Xylenes - Total	mg/L	< 0.003	0.003	Pass	
Method Blank		101000		1 400	
Total Recoverable Hydrocarbons - 2013 NEPM Fractio	ns				
Naphthalene	mg/L	< 0.01	0.01	Pass	
TRH C6-C10	mg/L	< 0.02	0.02	Pass	
TRH >C10-C16	mg/L	< 0.02	0.05	Pass	
TRH >C16-C34	mg/L	< 0.1	0.1	Pass	
TRH >C34-C40	mg/L	< 0.1	0.1	Pass	
Method Blank		< 0.1	0.1	1 435	
Polycyclic Aromatic Hydrocarbons				1	
Acenaphthene	mg/L	< 0.001	0.001	Pass	
Acenaphthylene	mg/L	< 0.001	0.001	Pass	
Anthracene	mg/L	< 0.001	0.001	Pass	
Benz(a)anthracene	mg/L	< 0.001	0.001	Pass	
Benzo(a)pyrene	mg/L	< 0.001	0.001	Pass	
Benzo(b&i)fluoranthene	mg/L	< 0.001	0.001	Pass	
	mg/L	< 0.001	0.001	Pass	
Benzo(g.h.i)perylene Benzo(k)fluoranthene	mg/L	< 0.001	0.001	Pass	
Chrysene	mg/L	< 0.001	0.001	Pass	
	ŭ	< 0.001		Pass	
Dibenz(a.h)anthracene	mg/L		0.001		
Fluoranthene	mg/L	< 0.001	0.001	Pass	
Fluorene Indeno(1.2.3-cd)pyrene	mg/L	< 0.001 < 0.001	0.001	Pass	
	mg/L			Pass	
Naphthalene	mg/L	< 0.001	0.001	Pass	
Phenanthrene	mg/L	< 0.001	0.001	Pass	
Pyrene	mg/L	< 0.001	0.001	Pass	
Method Blank					
Heavy Metals	···· ·· //			Dara	
Arsenic (filtered)	mg/L	< 0.001	0.001	Pass	
Cadmium (filtered)	mg/L	< 0.0002	0.0002	Pass	
Chromium (filtered)	mg/L	< 0.001	0.001	Pass	
Copper (filtered)	mg/L	< 0.001	0.001	Pass	
Lead (filtered)	mg/L	< 0.001	0.001	Pass	
Mercury (filtered)	mg/L	< 0.0001	0.0001	Pass	
Nickel (filtered)	mg/L	< 0.001	0.001	Pass	
Zinc (filtered)	mg/L	< 0.005	0.005	Pass	
LCS - % Recovery					
Total Recoverable Hydrocarbons - 1999 NEPM Fractio					
TRH C6-C9	%	75	70-130	Pass	

Те	est		Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
TRH C10-C14			%	84		70-130	Pass	
LCS - % Recovery								
BTEX								
Benzene			%	92		70-130	Pass	
Toluene			%	89		70-130	Pass	
Ethylbenzene			%	86		70-130	Pass	
m&p-Xylenes			%	86		70-130	Pass	
o-Xylene			%	89		70-130	Pass	
Xylenes - Total			%	87		70-130	Pass	
LCS - % Recovery								
Total Recoverable Hydrocarbo	ons - 2013 NEPM Fracti	ions						
Naphthalene			%	85		70-130	Pass	
TRH C6-C10			%	76		70-130	Pass	
TRH >C10-C16			%	85		70-130	Pass	
LCS - % Recovery				4				
Polycyclic Aromatic Hydrocarl	bons							
Acenaphthene			%	71		70-130	Pass	
Acenaphthylene			%	77		70-130	Pass	
Anthracene			%	74		70-130	Pass	
Benz(a)anthracene			%	83		70-130	Pass	
Benzo(a)pyrene			%	83		70-130	Pass	
Benzo(b&j)fluoranthene			%	85		70-130	Pass	
Benzo(g.h.i)perylene			%	86		70-130	Pass	
Benzo(k)fluoranthene			%	80		70-130	Pass	
Chrysene			%	79		70-130	Pass	
Dibenz(a.h)anthracene			%	87		70-130	Pass	
Fluoranthene			%	77		70-130	Pass	
Fluorene			%	76		70-130	Pass	
Indeno(1.2.3-cd)pyrene			%	88		70-130	Pass	
Naphthalene			%	70		70-130	Pass	
Phenanthrene			%	70		70-130	Pass	
			%	74		70-130	Pass	
Pyrene LCS - % Recovery			70	/5		70-130	Pass	
Heavy Metals			0/	0.4		70.400	Daaa	
Arsenic (filtered)			%	94		70-130	Pass	
Cadmium (filtered)			%	92		70-130	Pass	
Chromium (filtered)			%	92		70-130	Pass	
Copper (filtered)			%	92		70-130	Pass	
Lead (filtered)			%	94	<u>├</u> ──	70-130	Pass	
Mercury (filtered)			%	99	<u>├</u> ───	70-130	Pass	
Nickel (filtered)			%	94		70-130	Pass	
Zinc (filtered)			%	127		70-130	Pass	• ··· ·
Test	Lab Sample ID	QA Source	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery								
Total Recoverable Hydrocarbo	ons - 1999 NEPM Fracti	ions		Result 1				
TRH C6-C9	S19-Jn13611	NCP	%	100		70-130	Pass	
Spike - % Recovery								
BTEX				Result 1				
Benzene	S19-Jn13611	NCP	%	100		70-130	Pass	
Toluene	S19-Jn13611	NCP	%	100		70-130	Pass	
Ethylbenzene	S19-Jn13611	NCP	%	102		70-130	Pass	
m&p-Xylenes	S19-Jn13611	NCP	%	98		70-130	Pass	
· · ·	S19-Jn13611	NCP	%	101			Pass	
o-Xylene						70-130		
Xylenes - Total	S19-Jn13611	NCP	%	99		70-130	Pass	

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery									
Total Recoverable Hydrocarbor	ns - 2013 NEPM Fract	tions		Result 1					
Naphthalene	S19-Jn13611	NCP	%	102			70-130	Pass	
TRH C6-C10	S19-Jn13611	NCP	%	96			70-130	Pass	
Spike - % Recovery									
Heavy Metals				Result 1					
Arsenic (filtered)	S19-Jn16359	NCP	%	90			70-130	Pass	
Cadmium (filtered)	S19-Jn16359	NCP	%	91			70-130	Pass	
Chromium (filtered)	S19-Jn16359	NCP	%	91			70-130	Pass	
Copper (filtered)	S19-Jn16359	NCP	%	91			70-130	Pass	
Lead (filtered)	S19-Jn16359	NCP	%	93			70-130	Pass	
Mercury (filtered)	S19-Jn16359	NCP	%	95			70-130	Pass	
Nickel (filtered)	S19-Jn16359	NCP	%	93			70-130	Pass	
Zinc (filtered)	S19-Jn16359	NCP	%	93			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
Total Recoverable Hydrocarbor	ns - 1999 NEPM Fract	tions		Result 1	Result 2	RPD			
TRH C6-C9	S19-Jn23494	NCP	mg/L	< 0.02	< 0.02	<1	30%	Pass	
Duplicate	•								
втех				Result 1	Result 2	RPD			
Benzene	S19-Jn23494	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Toluene	S19-Jn23494	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Ethylbenzene	S19-Jn23494	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
m&p-Xylenes	S19-Jn23494	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
o-Xylene	S19-Jn23494	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Xylenes - Total	S19-Jn23494	NCP	mg/L	< 0.003	< 0.003	<1	30%	Pass	
Duplicate									
Total Recoverable Hydrocarbor	ns - 2013 NEPM Fract	tions		Result 1	Result 2	RPD			
Naphthalene	S19-Jn23494	NCP	mg/L	< 0.01	< 0.01	<1	30%	Pass	
TRH C6-C10	S19-Jn23494	NCP	mg/L	< 0.02	< 0.02	<1	30%	Pass	
Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Arsenic (filtered)	S19-Jn16352	NCP	mg/L	0.001	0.001	3.0	30%	Pass	
Cadmium (filtered)	S19-Jn16352	NCP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Chromium (filtered)	S19-Jn16352	NCP	mg/L	0.001	0.001	7.0	30%	Pass	
Copper (filtered)	S19-Jn16352	NCP	mg/L	0.005	0.005	<1	30%	Pass	
Lead (filtered)	S19-Jn16352	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Mercury (filtered)	S19-Jn16352	NCP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
Nickel (filtered)	S19-Jn16352	NCP	mg/L	0.004	0.004	6.0	30%	Pass	
Zinc (filtered)	S19-Jn16352	NCP	mg/L	0.068	0.069	1.0	30%	Pass	

Comments

Sample Integrity	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

mgt

Qualifier Codes/Comments

Code Description

N01	F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis).
N02	Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.
N04	F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes.
N07	Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs

Authorised By

Andrew Black Andrew Sullivan Gabriele Cordero Analytical Services Manager Senior Analyst-Organic (NSW) Senior Analyst-Metal (NSW)

Glenn Jackson General Manager

Final report - this Report replaces any previously issued Report

- Indicates Not Requested

* Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins | mgt shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins | mgt be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

CHAIN OF CUSTOPY - Client: ENVIROLAB SERVICES Note training The Create Type Create Service Source Systemy RSW 2000 Count Source Systemy RSW 2000 Source System RSW 2000		(
ENVERONMENT Service Environmental Type Comm Colspan="2">Colspan="2"Colspan="2"Colspan=""2"Colspan=""2"Colspan=""2"Colspan=""2"Colspan=""2"Col			0	HAIN O	FCU	STOL		Clien	t	
Educ Environmental International based Fundadian (Struct Participantian (Struct Partipantian (Struct Participantian (Struct Participantia				ENV	IROLAI	B SERV	ICES			
Type: Crease Planet Munipity Other: 18366 Ausdard munipings@2016_com_au_ 	Client:	Zoic En	vironmental		Client Proje	ect Name a	nd Number		166 GME & Sediment	Envirolab Servic
Ethead Humings Otion: 1316 User Lored 9, 189 Kert Street, Sythery HSW 2000 The result regulated for the result	Project Mgr:		Tyler Creese							12 Ashley St, Chatsw
Line 1, Lond 9, 189 Kent Street, Synthery HSM 2000 Envirolitie Services (Single Field Services (S	Sampler:		Edward Munnings		PO No.:		18166			
Interd munings@2006.com au Orchoger standard (munings@2006.com au) Orchoger standard (munings@2006.com au) Terms request Terms request Terms request Standard Sample Information Page annalid Type of sample Terms request Terms request <td></td> <td>i 9, 189 Kent Street, Syc</td> <td>Iney NSW 2000</td> <td></td> <td>Envirolab S</td> <td>ervices Qu</td> <td>ote No. :</td> <td></td> <td></td> <td>ē</td>		i 9, 189 Kent Street, Syc	Iney NSW 2000		Envirolab S	ervices Qu	ote No. :			ē
92518070 Fac: Note: Internation Note: Internation Total Required Note: Internation Total Required Note: Internation Total Required		nnings@zoic.com.au;	lyler.creese@zoic.co	m.au	Or choose:	standard				
Teample Information Teample ID Date sample Type of sample Since at a samp		9251807	Fax:		Note: Inform L	ab in advance	lf urgent turn			Contact: Aileen Hie
Client Sample ID Date sampled Type of sample MW01 13.06.2019 W SD-1 13.06.2019 W SD-2 13.06.2019 W SD-3 13.06.2019 W TB 13.06.2019 W TB 13.06.2019 W TS		Sample Inform	nation		T		1		Tests Require	
MW01 13.06.2019 W X <		ent Sample ID	Date sampled	Type of sample		Combo 3 (soil)			TRH, BTEX, PAH, 8 Heavy	
MW02 13.06.2019 W X <	-	MW01	13.06.2019	W	×					
SD-1 13.06.2019 S X X SD-2 13.06.2019 S X X X DUP-2 13.06.2019 W X X X X X TRUP-2 13.06.2019 W X	2	MW02	13.06.2019	W	X		0			
SD-2 13.06.2019 S X <	S.	SD-1	13.06.2019	S		×	×	-		
SD-3 13.06.2019 X <	f	SD-2	13.06.2019	S		×	×			
DUP-2 13.06.2019 W X X X TB 13.06.2019 W X X X X TS 13.06.2019 W X X X X X TS 13.06.2019 W X <td>5</td> <td>SD-3</td> <td>13.06.2019</td> <td>S</td> <td></td> <td>×</td> <td>X</td> <td></td> <td></td> <td></td>	5	SD-3	13.06.2019	S		×	X			
TRIP-2 13.06.2019 W X X X TB 13.06.2019 W X X Image: Control of the second	6 1	DUP-2	13.06.2019	W	×					
TB 13.06.2019 W X X TS 13.06.2019 W X X X TS 13.06.2019 W X X X X TS 13.06.2019 W X	4	TRIP-2	13.06.2019	W					X	
TS 13.06.2019 W X X Environmental Edward Munning Company): 7.4.5 Zol: Environmental Edward by (company): 7.4.5 Zol: Environmental Edward by (company): 7.4.5 Zol: Environmental Print Name: Scurve have:		TB	13.06.2019	W				×		
Y(company): "3.45 Zolc Environmental Received by (company): Company): Company): "3.45 Company): Company): <td></td> <td>TS</td> <td>13.06.2019</td> <td>W</td> <td></td> <td></td> <td></td> <td>×</td> <td></td> <td></td>		TS	13.06.2019	W				×		
Company): 7,45 Zok Environmental (2,4,4, W - 3 Chain of Course Another 1,3,5,4,4 Chain of Course Chain Course 1,3,5,4,4 Chain of Chain									En	Aiplah Sprvices
Y (company): 3.45 Base Received: 1.3 Chain of Cuelod: 2.5 Edward Hunnings 2.7 Print Name: 2.0 Edward Hunnings 2.7 Print Name: 2.0 Chain of Cuelod: 1.3 Chain of Cuelod: 1.3 Chain of Cuelod: 1.3 Chain of Cuelod: 1.3								-	TROUM	12 Ashley 3
Y (company): 7.4.5 Zoic Environmental Received by Shi (Quin, Way Edward Munnings CY Print Name: Sura, h (Deale & Time: Sura, h Sol, H Yuly Way									100 NO: 21015	S and so
Print Name: South of Cluster Company): ''''''''''''''''''''''''''''''''''''									Danoived: /	1 190 1
Image: Source of Cleaned Monitors Image: Source of Sourc									Time Received: \	631
Y (company): 3.4.5 Zoic Environmental Received by (company): CLS Schward Munnings C.1.4 Ghein of Cuelody Client, Issued 1400/03/2019, San 13/5/14 Edward Munnings C.1.4 Print Name: Scy 2/14 Fund Mund Chein of Cuelody Client, Issued 1400/03/2019, San 13/5/14 Date & Time: 13/06/14 C.1.4 Fund Mund									Received by:	
Py (company): 3.4.5 Zoic Environmental Received by (company): Club Company): S.C. S.C. Print Name: S.C. S.C. Multiplication Chein of Cuelody Cliont, leaved 1400/03/2019, Base 13, 51, 4 Date & Time: 13/06/19 61/19 61:31 44/14/14 44/14/14									Cuoling: Celoep	ack
Pr (company): 7.15 Zoic Environmental Received by (company): CLS Schwerz Augures (21, Way Edward Munnings C7 Print Name: Savah Botton Unglue Chein of Cuelody Cliont, Isourd 110062001, Page 13, 5, 14, 7 Date & Time: 13/06/19 6:51 444/19 4.14									Security: (Interest	Auguanyone
y (company): 3.4.5 Zoic Environmental Received by (company): CLS Schward Munnings C7 Print Name: Sava h Bolton Studied Market Multiple Chein of Cuelody Client Insure 130620019 and 135.5.1.0.1.0.1.0.1.0.1.0.1.0.1.0.1.0.1.0.										
24 (company): 3.4.5 Zoic Environmental Received by (company): CLS Scawery Hugerover (2212 Way Edward Munnings C-7/ Print Name: Savan Bolton Ugerover Chain of Cuelody Cliont Josuan 1306,2019 and 135,514.7 Date & Time: 13/06/19 6:31 44/4/19 4.4										
Chain of Cuelody Client lowerd Hunnings (C.) Print Name: Sourch Bolton & Cuelogy Chain of Cuelogy Client lowerd 1402/03/19 and 130.6.2019 Date & Time: 13/06/19 6:31 44/19 4.14	Relinquished by (company	27 C ::	Zoic Environmental		Received b	v (company	10 10	5	Manna	the second se
Chain of Custody Cliont Isoured 1 Modeles 1306, 2018 and 13.6.10. D Date & Time: 13/06/19 6:31 14/1/19 4.9	Print Name:	in Way	Edward Munnings	6-01	Print Name	Sau	h	E	ale	Temperature Recieved at:
and the second s	Data & Time: Chain of Cue	Client, leeued 14/02	13.06 101 Page 1 31	S.la D	Date & Tim	13/	119	6:3	11 11 11 11	Ransported by: Hand delivered / courier
	1.101.1	1 44							V	

#661065

Melbourne

Sydney Unit F3, Building F
 Melbourne
 Sydney

 6 Monterey Road
 Unit F3, Building F

 Dandenong South Vic 3175
 16 Mars Road

 Phone : +61 3 8564 5000
 Lane Cove West NSW 2066

 NATA # 1261
 Phone : +61 2 9900 8400

 Site # 1254 & 14271
 NATA # 1261 Site # 18217

Brishane
 Bitsbane

 1/21 Smallwood Place

 Murarrie QLD 4172

 Phone : +61 7 3902 4600

 NATA # 1261 Site # 20794
 Perth 2/91 Leach Highway Kewdale WA 6105 Phone : +61 8 9251 9600 NATA # 1261 Site # 23736

ABN - 50 005 085 521

e.mail : EnviroSales@eurofins.com

web : www.eurofins.com.au

Sample Receipt Advice

Contact name:	Tyler Creese
Project name:	18166 GME & SEDIMENT
COC number:	Not provided
Turn around time:	7 Day
Date/Time received:	Jun 14, 2019 4:36 PM
Eurofins mgt reference:	661065

Sample information

Company name:

- A detailed list of analytes logged into our LIMS, is included in the attached summary table.
- All samples have been received as described on the above COC.

Zoic Environmental Ptv Ltd

- COC has been completed correctly.
- \mathbf{V} Attempt to chill was evident.
- Appropriately preserved sample containers have been used.
- All samples were received in good condition.
- Samples have been provided with adequate time to commence analysis in accordance with the relevant holding times.
- Appropriate sample containers have been used.
- \mathbf{V} Sample containers for volatile analysis received with zero headspace.
- \boxtimes Split sample sent to requested external lab.
- \times Some samples have been subcontracted.
- N/A Custody Seals intact (if used).

Contact notes

If you have any questions with respect to these samples please contact:

Andrew Black on Phone : (+61) 2 9900 8490 or by e.mail: AndrewBlack@eurofins.com

Results will be delivered electronically via e.mail to Tyler Creese - tyler.creese@zoic.com.au.

38 Years of Environmental Analysis & Experience

Appendix D Enviro-Screen Report

ENVIRO-SCREEN

Property Details

380 Victoria Place, Drummoyne NSW

Search Date: 22 May 2019

Understanding your Report

Your Report has been produced by Land Insight and Resources (LI Resources).

Your Report is based on information available from public databases and sources at the date of reporting. The information gathered relates to land that is within a **200 to 2000 m radius** (buffer zone) from the boundaries of the Property. A smaller or larger radius may be applied for certain records (as listed under records and as shown in report maps).

While every effort is made to ensure the details in your Report are correct, LI Resources cannot guarantee the accuracy or completeness of the information or data provided.

The report provided by LI Resources includes data listed on page 3 (table of contents). All sources of data and definitions are provided on the report maps and as listed in the Product Guide (Attached). For a full list of references, metadata, publications or additional information not provided in this report, please contact LI Resources at info@liresources.com.au.

The report does not include title searches; dangerous good searches or; property certificates (unless requested); or information derived from a physical inspection, such as hazardous building materials, areas of infilling or dumping/spilling of potentially contaminated materials. It is important to note that these documents and an inspection can contain information relevant to contamination that may not be identified by this Report.

This Report, and your use of it, is regulated by LI Resources Terms and Conditions (See LIR Product Guide).

Land Insight and Resources

ABN 70 167 080 837

phone: + 61 2 9979 1720 e-mail: info@liresources.com.au https://liresources.com.au/

INDEX

Section 1 - Property Setting	4
1.1 SITE LOCATION MAP AND SENSITIVE RECEPTORS Map 1 (500m Buffer) 1.2 PLANNING CONTROLS Map 2 (onsite) 1.3 SOIL LANDSCAPE Map 3a (onsite) 1.4 ACID SULFATE SOIL Map 3a (onsite) 1.5 ATLAS OF AUSTRALIAN ACID SULFATE SOIL AND SALINITY Map 3b (onsite) 1.6 GEOLOGY AND TOPOGRAPHY Map 4 (onsite)	4 4 5 5 6
Geology Topography	6 6
1.7 HYDROGEOLOGY AND GROUNDWATER BORES Map 5a (500m - 2000m Buffer) 1.8 HYDROGEOLOGY AND OTHER BOREHOLES Map 5b (2000m Buffer) Groundwater Dependent Ecosystems Section 2 Environmental Records Summary – Contamination and Potentially Contaminating Activities	6 7 7 9
 2.1 PFAS INVESTIGATION PROGRAM Map 5b (2000m Buffer) 2.2 CONTAMINATED LAND RECORD OF NOTICES ISSUED UNDER THE CLM ACT 1997 Map 6 (1000m Buffer) 2.3 SITES NOTIFIED AS CONTAMINATED TO THE NSW EPA Map 6 (1000m Buffer) 2.4 OTHER CONTAMINATION ISSUES Map 6 (1000m Buffer) James Hardie Asbestos Waste Contamination Legacy Former Uranium Processing Site at Hunters Hill (NSW) Former Gasworks Sites Military Facilities 	9 9 10 10 10 10 10
2.5 POTENTIALLY CONTAMINATING ACTIVITIES Map 7a (500m Buffer) Aviation Fuel Depots/Terminals Aviation Rescue Fire Fighting Facilities (ARFF) Derelict Mines and Quarries Dry Cleaners Historical (Legacy) Landfills Liquid Fuel Depots/Terminals Power Stations Service Stations Substation / Switching Stations Telephone Exchanges Waste Management Facilities Waste Management Facilities Unexploded Ordnance (UXO) Sites - Department of Defence (DoD)	<i>11</i> 11 11 11 11 11 11 11 11 12 12 12 12 12
2.6 OTHER CURRENT POTENTIALLY CONTAMINATING ACTIVITIES Map 7b (200m Buffer) Current Commercial and Trade Data Underground Storage Tank (UST) Parramatta River Catchment Land Use Areas – Zoning Changes Parramatta River Catchment Land Use Areas – Reclamation Areas	<i>12</i> 12 13 13 13
2.7 NPI INDUSTRIAL FACILITIES Map 8 (500m Buffer)	13
2.8 LICENSING UNDER THE POEO ACT 1997 Map 8 (500m Buffer) Licences Delicensed Premises still Regulated by EPA, Licences Surrendered, Clean Up and Penalty Notices	<i>13</i> 13 13
2.9 PUBLIC REGISTER OF PROPERTIES AFFECTED BY LOOSE-FILL ASBESTOS INSULATION Map 8 (onsite)	13
HISTORICAL COMMERCIAL & TRADE DIRECTORY DATA 1932 HISTORICAL COMMERCIAL & TRADE DIRECTORY DATA (200m Buffer) 1940 HISTORICAL COMMERCIAL & TRADE DIRECTORY DATA (200m Buffer) 1950 HISTORICAL COMMERCIAL & TRADE DIRECTORY DATA (200m Buffer) 1965 HISTORICAL COMMERCIAL & TRADE DIRECTORY DATA (200m Buffer) 1970 HISTORICAL COMMERCIAL & TRADE DIRECTORY DATA (200m Buffer) 1974 HISTORICAL COMMERCIAL & TRADE DIRECTORY DATA (200m Buffer) 1980 HISTORICAL COMMERCIAL & TRADE DIRECTORY DATA (200m Buffer) 1980 HISTORICAL COMMERCIAL & TRADE DIRECTORY DATA (200m Buffer) 1990 HISTORICAL COMMERCIAL & TRADE DIRECTORY DATA (200m Buffer) 1990 HISTORICAL COMMERCIAL & TRADE DIRECTORY DATA (200m Buffer)	14 14 14 15 15 16 16 17 18
3.1 FEDERAL, STATE AND LOCAL HERITAGE Map 9 (200m Buffer) Local Environment Plan (LEP) Heritage National Heritage List (NHL) Register of the National Estate (RNE) Non-Aboriginal heritage item (Local) Non-Aboriginal heritage item (SHR)*	<i>18</i> 18 18 18 18 18

Commonwealth Heritage List (CHL) World Heritage Area (WHA)	18 19
3.2 NATURAL HAZARDS & COASTAL MANAGEMENT Map 10 (500m Buffer)	19
Bush Fire Prone Land (BPL) Fire History (Wildfires and Prescribed Burns) Flood Hazard Area	19 19 19
3.3 STATE ENVIRONMENTAL PLANNING POLICY (COASTAL MANAGEMENT) Map 10 (500m Buffer)	19
ATTACUMENTO	

ATTACHMENTS Attachment A - Report Maps Attachment B - Historical Imagery LIR Product Guide and Terms and Conditions

Section 1 - Property Setting

1.1 SITE LOCATION MAP AND SENSITIVE RECEPTORS

Map 1 (500m Buffer)

Sensitive receptor	Category	Distance (m)*	Direction
Wharf	Wharf	5	north-east
Gladesville Bridge Marina	Marina	6	north-west
Wharf	Wharf	38	north-east
Howley Park	Park	48	north-west
Wharf	Wharf	107	north-east
Wharf	Wharf	111	north-east
Chiswick Wharf	Wharf	367	south-west
Huntleys Point Wharf	Wharf	373	north-west
Blackwall Point Reserve	Park	381	south-west
Swimming Pool	Swimming Pool	387	south-west
Wharf	Wharf	390	south-west
Five Dock Bay	Bay / Inlet / Basin	415	south
Chambers Park	Park	431	south-west
Betts Park	Park	458	north-west
Bob Smith Reserve	Park	482	south-east
Chiswick Park	Park	487	south-west

*Distance from the sensitive receptor point feature to the site boundary centroid.

1.2 PLANNING CONTROLS

Map 2 (onsite)

Zoning	R3	Medium Density Residential	
Environmental Planning Instruments	Not identified		

1.3 SOIL LANDSCAPE

Map 3a (onsite)

Soil Landscape	ERIa	LAMBERT	Soil Group	EROSIONAL
Description	20-120 m, slopes, wid poor draina woodland. Soils- shalld (Gn2.2) on (Uc1.2) on (Uc2.21), G areas; local Limitations	undulating to rolling rises and low slopes 20%. Rock outcrop >50% e rock benches with low broken ge. Open and closed heathland, ow (<50 cm) discontinuous Earthy crests and insides of benches; si leading edges; shallow to mod Grey Earths (Gn2.81) and Gleyed sed Yellow Podzolic Soils (Dy4.1, - very high soil erosion hazard, ro hly permeable soil, very low soil fe	. Broad ridges, ge scarps, small ha scrub and occa y Sands (Uc5.11, hallow (<20 cm) derately deep (< Podzolic Soils (Dy5.2) associated ck outcrop, seaso	ently to moderately inclined nging valleys and areas of sional low eucalypt open- Uc5.22) and Yellow Earths Siliceous Sands/Lithosols (150 cm) Leached Sands (Dg4.21) in poorly drained d with shale lenses.

1.4 ACID SULFATE SOIL

	On the Property?	Within Record Search Buffer?
Acid Sulfate Soil Risk Maps (ASS) (Table 1.5.1)	Class 5	Class 5, Class 2

1.5 ATLAS OF AUSTRALIAN ACID SULFATE SOIL AND SALINITY

ASRIS Atlas of Australian Sulfate Soils (Table 1.5.2)	Aa(p-)	ASS in subtidal marine environments	Probability of Occurrence	High Probability of occurrence
Hydrologic Soil Group (Table 1.5.3)	A - high			
Salinity Hazard			Not identified	

Table 1.5.1. Classification scheme in the ASS Planning Maps

Class of Land as shown on ASS Planning Maps		
1	Any works	
2	Works below natural ground surface Works by which the watertable is likely to be lowered	
3	Works beyond 1m below natural ground surface Works by which the watertable is likely to be lowered beyond 1m below natural ground surface	
4	Works beyond 2m below natural ground surface Works by which the watertable is likely to be lowered beyond 2m below natural ground surface	
5	Works within 500m of adjacent Class 1, 2, 3, or 4 land which are likely to lower the watertable below 1m AHD on adjacent Class 1, 2, 3 or 4 land.	

For each class of land, the maps identify the type of works likely to present an environmental risk if undertaken in the particular class of land. If these types of works are proposed, further investigation is required to determine if ASS are actually present and whether they are present in such concentrations as to pose a risk to the environment.

Table 1.5.2. Australian Atlas of Acid Sulfate Soils ¹	(ASS) map (CSIRO/NatCASS)
--	---------------------------

Code	Distinguishing soil/sediment properties, vegetation, landforms, or other characteristics	
Probability of Occurrence of ASS ¹		
А	High Probability of occurrence - (>70% chance of occurrence in mapping unit)	
В	Low Probability of occurrence - (6-70% chance of occurrence in mapping unit)	
C	Extremely low probability of occurrence - (1-5% chance of occurrence in mapping unit)	
D	No probability of occurrence - (<1% chance of occurrence in mapping unit)	
х	Disturbed ASS ¹ terrain - (ASS ¹ material present below urban development).	
u	Unclassified - (Insufficient information to classify map unit)	
Zones		
а	Potential acid sulfate soil material and/or Monosulfidic Black Ooze (MBO).	
b, c	Potential acid sulfate soil generally within upper 1 m.	
c, d, e	ASS ¹ generally within upper 1 m.	
f	ASS ¹ generally below 1 m from the surface	
g	ASS ¹ , generally below 3 m from the surface.	
h	ASS ¹ generally within 1 m of the surface.	
i, j	ASS ¹ generally below 1 m of the surface.	
k	ASS ¹ material and/or Monosulfidic Black Ooze (MBO).	
l, m, n, o, p, q	ASS ¹ generally within upper 1 m in wet / riparian areas.	

Map 3a (onsite)

Map 3b (onsite)

	Subscripts to codes					
(a)	Actual acid sulfate soil (AASS) = sulfuric material.					
(p)	Potential acid sulfate soil (PASS) = sulfidic material.					
(q)	(q) Monosulfidic Black Ooze (MBO) is organic ooze enriched by iron monosulfides.					
	Confidence levels					
(1)	All necessary analytical and morphological data are available					
(2)	Analytical data are incomplete but are sufficient to classify the soil with a reasonable degree of confidence					
(3)	No necessary analytical data are available, but confidence is fair, based on a knowledge of similar soils in similar environments					
(4)	No necessary analytical data are available, and classifier has little knowledge or experience with ASS, hence classification is provisional					

¹Acid Sulfate Soils (ASS) are all those soils in which sulfuric acid may be produced, is being produced, or has been produced in amounts that have a lasting effect on main soil characteristics (Pons 1973). Acid sulfate soil (ASS) may include PASS or AASS + PASS. Potential acid sulfate soil (PASS) = sulfidic material. Actual acid sulfate soil (AASS) = sulfuric material.

Table 1.5.3. Hydrologic Soil Group

Code	Soil Group Characteristics
А	Soils having high infiltration rates, even when thoroughly wetted and consisting chiefly of deep, well to excessively-drained sands or gravels. These soils have a high rate of water transmission.
В	Soils having moderate infiltration rates when thoroughly wetted and consisting chiefly of moderately deep to deep, moderately fine to moderately coarse textures. These soils have a moderate rate of water transmission.
С	Soils having slow infiltration rates when thoroughly wetted and consisting chiefly of soils with a layer that impedes downward movement of water, or soils with moderately fine to fine texture. These soils have a slow rate of water transmission.
D	Soils having very slow infiltration rates when thoroughly wetted and consisting chiefly of clay soils with a high swelling potential, soils with a permanent high water table, soils with a claypan or clay layer at or near the surface, and shallow soils over nearly impervious material. These soils have a very slow rate of water transmission.

1.6 GEOLOGY AND TOPOGRAPHY

Map 4 (onsite)

Geology

Map Sheet	Symbol	Formation	Group	Era	Period	Description
Sydney 1:100,000 Geological Map	Rh	-	-	Mesozoic	Triassic	Medium to coarse grained quartz sandstone, very minor shale and laminite lenses

Topography

Topography

2-6mAHD

1.7 HYDROGEOLOGY AND GROUNDWATER BORES

Map 5a (500m - 2000m Buffer)

	On the Property?	Within Record Search Buffer?		
Aquifer Type	Porous, extensive aquifers of low to moderate productivity	Porous, extensive aquifers of low to moderate productivity Porous, extensive highly productive aquifers		
Drinking Water Catchments	Not identified	Not identified		
Protected Riparian Corridor	Not identified	Not identified		
UPSS Environmentally sensitive zone	Southern NSW area UPSS	Southern NSW area UPSS		

	On the Property?	Within Record Search Buffer?
Wetlands	Not identified	Parramatta River / Lane Cove River
Groundwater Bores	Not identified	Yes, see 1.7.1

Table 1.7.1. Groundwater Bore Details

Groundwater Bore ID	Authorised Purpose	Completion Date	Drilled Depth (m)	Final Depth (m)	SWL ¹ (m)	Salinity ¹	Yield ¹ (L/s)	Distance (m)	Direction
GW106427	Household	01-01-50	3.00	3.00	3.00	-	10.00	560.00	north-east
GW107688	Unknown	21-12-06	-	-	-	-	-	1037.00	north-east

¹The most recent data available from NSW Department of Industry – Lands & Water Division.

Table 1.7.2. Groundwater Bore Driller Lithology Details

Groundwater Bore ID	From Depth (m)	To Depth (m)	Lithology	Description	Distance (m)	Direction
Not identified	-	-	-	-	-	-

1.8 HYDROGEOLOGY AND OTHER BOREHOLES

Map 5b (2000m Buffer)

	On the Property?	Within Record Search Buffer?
Groundwater Vulnerability	Not identified	Not identified
Groundwater Exclusion Zones (Botany GMZ ¹)	Not identified	Not identified
Hydrogeologic Unit	Not identified	Late Permian/Triassic sediments (porous media - consolidated)
Other known borehole investigations (500m buffer)	Not identified	Yes, see 1.8.1

1 - Botany Groundwater Management Zones (BGMZ): Zone 1 – the use of groundwater remains banned; Zones 2 to 4 – domestic groundwater use is banned, especially for drinking water, watering gardens, washing windows and cars, bathing, or to fill swimming pools

Groundwater Dependent Ecosystems

Name	On the Property?	Within Record Search Buffer?
Ecosystems that rely on the Surface expression of Groundwater	Not identified	Not identified
Ecosystems that rely on Subsurface presence of Groundwater	Not identified	High to Low potential for GW interaction

 Table 1.8.1. Other known borehole investigations (Coal Seam Gas (CSG), Petroleum Wells and Other Boreholes) (500m buffer)

Borehole ID	Purpose	Project	Client/License	Date Drilled	Depth (m)	Distance (m)	Direction
BH261	Borehole			06-11-08	18.41	138.78	north-west
BH264	Borehole	NWRL_R219 Sydney Metro Line 1 Contamination Assessment Report		03-11-08	26.66	168.54	north-west
BH228	Borehole		North West Metro	14-11-08	64.2	252.51	north-west
BH229	Borehole			18-09-08	60.36	324.44	north-west
BH265	Borehole			30-10-08	11.45	395.78	north-west
BH4	Borehole	NWRL_R219 Sydney_Metro_line_1 Arup NorthWest Metro		23-10-00	0	411.46	south-west
BH4	Borehole				12	411.46	south-west
BH3	Borehole			23-10-00	7.92	423.16	south-west
BH3	Borehole		North West Metro		11.8	423.51	south-west
BH1	Borehole		Team	13-09-00	1.7	426.49	south-west
BH1	Borehole				1.7	426.65	south-west
BH2	Borehole				6.1	431.09	south-west
BH2	Borehole			13-09-00	6.1	450.64	south-west

Section 2 Environmental Records Summary – Contamination and Potentially Contaminating Activities

2.1 PFAS INVESTIGATION PROGRAM

Map 5b (2000m Buffer)

Site	Address	Distance (m)	Direction
Not identified	-	-	-

2.2 CONTAMINATED LAND RECORD OF NOTICES ISSUED UNDER THE CLM ACT 1997

Map 6 (1000m Buffer)

Site Name ²	Site ID	Address ¹	Notices	Distance (m)	Direction
Not identified	-	-	-	-	-

1. Some addresses do not contain specific street numbers. Records identified as being in the surrounding area have been added for information.

2. Former NSW EPA sites. These sites have been removed from the Record of Notices and/or the Sites Notified lists and are kept here for information purposes only.

2.3 SITES NOTIFIED AS CONTAMINATED TO THE NSW EPA

Map 6 (1000m Buffer)

Site Name ²	Address ¹	Activity that caused Contamination	EPA Site Management Class ³	Distance (m)	Direction
Former Sydney Wiremills (BHP) site	Blackwall Point ROAD CHISWICK	Other Industry	Regulation under CLM Act not required	944	South- west

1. Some addresses do not contain specific street numbers. Records identified as being in the surrounding area have been added for information.

Former NSW EPA sites. These sites have been removed from the Record of Notices and/or the Sites Notified lists and are kept here for information purposes only.
 The EPA maintains a record of sites that have been notified to the EPA by owners or occupiers as contaminated land. The sites notified to the EPA and recorded on the register are at various stages of the assessment and/or remediation process. Table 5 outlines the possible management status that can be attributed to a registered contaminated site.

Table 2.3.1. EPA Site Management Class Explanation

	EPA Site Management Class			
Under Assessment	The contamination is being assessed by the EPA to determine whether regulation is required. The EPA may require further information to complete the assessment. For example, the completion of management actions regulated under the planning process or Protection of the Environment Operations Act 1997. Alternatively, the EPA may require information via a notice issued under s77 of the Contaminated Land Management Act 1997 or issue a Preliminary Investigation Order.			
Regulation under the CLM Act not required	The EPA has completed an assessment of the contamination and decided that regulation under the Contaminated Land Management Act 1997 is not required.			
Regulation being finalised	The EPA has completed an assessment of the contamination and decided that the contamination is significant enough to warrant regulation under the Contaminated Land Management Act 1997. A regulatory approach is being finalised.			
Contamination currently regulated under the CLM Act	The EPA has completed an assessment of the contamination and decided that the contamination is significant enough to warrant regulation under the Contaminated Land Management Act 1997 (CLM Act). Management of the contamination is regulated by the EPA under the CLM Act. Regulatory notices are available on the EPA's Contaminated Land Public Record.			
Contamination currently regulated under the POEO Act	The EPA has completed an assessment of the contamination and decided that the contamination is significant enough to warrant regulation. Management of the contamination is regulated under the Protection of the Environment Operations Act 1997 (POEO Act). The EPA's regulatory actions under the POEO Act are available on the POEO public register.			

	EPA Site Management Class
Contamination being managed via the planning process (EP&A Act)	The EPA has completed an assessment of the contamination and decided that the contamination is significant enough to warrant regulation. The contamination of this site is managed by the consent authority under the Environmental Planning and Assessment Act 1979 (EP&A Act) planning approval process, with EPA involvement as necessary to ensure significant contamination is adequately addressed. The consent authority is typically a local council or the Department of Planning and Environment.
Contamination formerly regulated under the CLM Act	The EPA has determined that the contamination is no longer significant enough to warrant regulation under the Contaminated Land Management Act 1997 (CLM Act). The contamination was addressed under the CLM Act.
Contamination formerly regulated under the POEO Act	The EPA has determined that the contamination is no longer significant enough to warrant regulation. The contamination was addressed by the appropriate consent authority via the planning process under the Environmental Planning and Assessment Act 1979 (EP&A Act).
Contamination was addressed via the planning process (EP&A Act)	The EPA has determined that the contamination is no longer significant enough to warrant regulation. The contamination was addressed by the appropriate consent authority via the planning process under the Environmental Planning and Assessment Act 1979 (EP&A Act).
Ongoing maintenance required to manage residual contamination (CLM Act)	The EPA has determined that ongoing maintenance, under the Contaminated Land Management Act 1997 (CLM Act), is required to manage the residual contamination. Regulatory notices under the CLM Act are available on the EPA's Contaminated Land Public Record.

2.4 OTHER CONTAMINATION ISSUES

Map 6 (1000m Buffer)

James Hardie Asbestos Waste Contamination Legacy

Site	Location	Туре	Distance (m)	Direction
Not identified	-	-	-	-

Former Uranium Processing Site at Hunters Hill (NSW)

Site	Location	Distance (m)	Direction
Not identified	-	-	-

Former Gasworks Sites

Site	Location	Distance (m)	Direction
Not identified	-	-	-

Military Facilities

Site name	Defence code	Description	RCIP*	Distance (m)	Direction
Not identified	-		-	-	-

*RCIP (Regional Contamination Investigation Program)

2.5 POTENTIALLY CONTAMINATING ACTIVITIES

Aviation Fuel Depots/Terminals

Site name	Description	Status	Distance (m)	Direction
Not identified	-	-	-	-

Aviation Rescue Fire Fighting Facilities (ARFF)

Site name	Class	Status	Distance (m)	Direction
Not identified	-	-	-	-

Derelict Mines and Quarries

Deposit Name	Method	Description	Status	Distance (m)	Direction
Not identified	-	-	-	-	-

Dry Cleaners

Site name	Location	Status	Distance (m)	Direction
Not identified	-	-	-	-

Historical (Legacy) Landfills

Site name	Description	Distance (m)	Direction
Not identified		-	-

Note: This is not an exhaustive list of all legacy landfills.

Liquid Fuel Depots/Terminals

Site name	Owner	Location	Status	Distance (m)	Direction
Not identified	-	-	-	-	-

Power Stations

Site name	Owner	Primary Fuel Type	Status	Distance (m)	Direction
Not identified	-	-	-	-	-

Service Stations

Site name	Owner	Location	Status	Distance (m)	Direction
Not identified	-	-	-	-	-

Substation / Switching Stations

Site name	Owner	Location	Status	Distance (m)	Direction
Not identified	-	-	-	-	-

Telephone Exchanges

Site name	Location	Status	Distance (m)	Direction
Not identified	-	-	-	-

Waste Management Facilities

Site name	Owner	Class	Status	Distance (m)	Direction
Not identified	-	-	-	-	-

Wastewater Treatment Facilities

Site name	Operator	Class	Status	Distance (m)	Direction
Not identified	-	-	-	-	-

Unexploded Ordnance (UXO) Sites - Department of Defence (DoD)

Site name	Site ID	Category	Description	Distance (m)	Direction
Not identified	-		-	-	-

2.6 OTHER CURRENT POTENTIALLY CONTAMINATING ACTIVITIES

Map 7b (200m Buffer)

Current Commercial and Trade Data

Site name	Category	Location	Status*	Distance (m)	Direction
Superior Marine Services	Boat repair shop	380 Victoria PI, Drummoyne NSW 2047	Current	0	onsite
X-Yachts Australia	Boat Dealer Importer	380 Victoria PI, Drummoyne NSW 2047	Current	0	onsite
Drummoyne Auto Care	Repair Facility	364 Victoria PI, Drummoyne NSW 2047	Former	62	South-east

*Data is current as when this report was created. However due to the turnover of business locations, some addresses may be former.

Underground Storage Tank (UST)

Premises	Tank type	Status*	Distance (m)	Direction
Not identified	-	-	-	-

Note: This is not an exhaustive list of all UST's.

Parramatta River Catchment Land Use Areas – Zoning Changes

Land Use 1943	Land Use 2005	Distance (m)	Direction
Not identified	-	-	-

Parramatta River Catchment Land Use Areas – Reclamation Areas

	On the Property?	Within Record Search Buffer?
Reclamation Area	Yes	Yes

*Many areas of Parramatta river have been reclaimed, often being used as rubbish dumps.

2.7 NPI INDUSTRIAL FACILITIES

Facility name	Address	Primary ANZSIC Class	Latest report	Distance (m)	Direction
Not identified	-	-	-	-	-

2.8 LICENSING UNDER THE POEO ACT 1997

Licences

Licence holder	Nº	Location Name	Premise Address	Fee Based Activity	Distance (m)	Direction
Not identified		-	-	-	-	-

Delicensed Premises still Regulated by EPA, Licences Surrendered, Clean Up and Penalty Notices

Licence holder	Nº	Name	Premise Address	Fee Based Activity	Status	Distance (m)	Direction
Not identified		-	-	-	-	-	-

2.9 PUBLIC REGISTER OF PROPERTIES AFFECTED BY LOOSE-FILL ASBESTOS INSULATION

Map 8 (onsite)

Address	Match Found
Not identified	-

Map 8 (500m Buffer)

Map 8 (500m Buffer)

HISTORICAL COMMERCIAL & TRADE DIRECTORY DATA

1932 HISTORICAL COMMERCIAL & TRADE DIRECTORY DATA

(200m Buffer)

Activity	Name	Address	Positional accuracy	Distance (m) *	Direction
Motor Engineers and Repairers	Carnemolia F	364 Victoria Road, Drummoyne	Address	47m	East
Motor Engineers and Repairers	Vincen HE	352 Victoria Road, Drummoyne	Address	98m	East
Motor Engineers and Repairers	Johnson PE	340 Victoria Road, Drummoyne	Address	149m	East
Motor Cars, Lorries & Garages	Drummoyne Motories	336 Victoria Road, Drummoyne	Address	165m	East
Motor Engineers and Repairers	Drummoyne Motories	336 Victoria Road, Drummoyne	Address	165m	East

If no distance is provided, address no longer exists.

1940 HISTORICAL COMMERCIAL & TRADE DIRECTORY DATA

Activity	Name	Address	Positional accuracy	Distance (m) *	Direction
Motor Garages	Carnemolla F	364 Victoria, Drummoyne	Address	47m	East

* If no distance is provided, address no longer exists.

1950 HISTORICAL COMMERCIAL & TRADE DIRECTORY DATA

Activity	Name	Address	Positional accuracy	Distance (m) *	Direction
Boats & Launches - Builders &/or For Sale	Lucas J F & Sons	380 Victoria Road, Drummoyne	Address	On Site	
Boats & Launches - For Hire	Lucas J F&Sons	380 Victoria Road, Drummoyne	Address	On Site	
Fishing Nets	Netmakers & Co	364 Victoria Road, Drummoyne	Address	47m	East
Motor Garages	Carnemolla F	364 Victoria Road, Drummoyne	Address	47m	East
Ship Repairs	Drummoyne Marine Service	342 Victoria Road, Drummoyne	Address	118m	East
Boats & Launches - Builders &/or For Sale	Drummoyne Marine Service	342-344 Victoria Road, Drummoyne	Address	118m	East
Motor Engineers & Repairers	Couch H L	336 Victoria Road, Drummoyne	Address	165m	East
Motor Garages	Brown's Central Motors	Victoria Road, Drummoyne	Street		
Motor Service Stations	Brown's Central Motors	Victoria Road, Drummoyne	Street		

* If no distance is provided, address no longer exists.

(200m Buffer)

(200m Buffer)

1965 HISTORICAL COMMERCIAL & TRADE DIRECTORY DATA

(200m Buffer)

Activity	Name	Address	Positional accuracy	Distance (m) *	Direction
Boats & Launches— Builders &/or For Sale	LUCAS J F & SONS	378-380 VictoriaRd, Drummoyne	Address	On Site	
Fishing Nets	NETMAKERS& CO	364 VictoriaRd, Drummoyne	Address	47m	East
Motor Garages	Carnemolla Frank&Sons	364 VictoriaRd, Drummoyne	Address	47m	East
Builders & Contractors	Cleaver C J	353 VictoriaRd, Drummoyne	Address	49m	South
Taxis	Askew J H	342 VictoriaRd, Drummoyne	Address	118m	East
Engineers— Manufacturing	Eudio Pty Ltd	347a VictoriaRd, Drummoyne	Address	142m	South
Motor Engineers & Repairers	Couch H L	336 VictoriaRd, Drummoyne	Address	165m	East
Chemists— Pharmaceutical	Pinerua F G	VictoriaRd, Drummoyne	Street		
Motor Cars & Trucks— New	Browns' Central Motors Pty Ltd	VictoriaRd, Drummoyne	Street		

^{*} If no distance is provided, address no longer exists.

1970 HISTORICAL COMMERCIAL & TRADE DIRECTORY DATA

Positional Distance Direction Activity Name Address (m) accuracy BOAT, LAUNCH & **YACHT BUILDERS** Lucas, J. F. & Sons, 380 Victoria Road, Drummoyne Address On Site &/OR REPAIRERS BOAT, LAUNCH & YACHT SALES & Lucas, J. F. & Sons, 380 Victoria Road, Drummoyne Address On Site SERVICE **BOATS, LAUNCHES &** Lucas, J. F. & Sons, 380 Victoria Road, Drummoyne Address On Site YACHTS—FOR HIRE Address On Site **SLIPWAYS** Lucas, J. F. & Sons, 380 Victoria Road, Drummoyne MOTOR Carnemolla, Frank Pty. Ltd., 364 Victoria Pl., Drummoyne Address 47m East GARAGES/ENGINEERS NET MAKERS-Address 47m Netmakers & Co., 364 Victoria PI., Drummoyne East **GENERAL MOTOR SERVICE** STATIONS—PETROL, Carnemolla, F.&Son, 364 Victoria Rd., Drummoyne Address 47m East OIL, Etc. DRUMMOYNE SHIP Drummoyne Marine Service, 344 Victoria Road, Drummoyne Address 118m East **BUILDERS/REPAIRERS** SLIPWAYS Drummoyne Marine Service, 344 Victoria Road, Drummoyne 118m Address East

(200m Buffer)

WELDERS—ELECTRIC &/OR OXY	Drummoyne Marine Service,	344 Victoria Road, Drummoyne	Address	118m	East
ENGINEERS-MARINE	Couch, H. L.,	336 Victoria Road, Drummoyne	Address	165m	East
MOTOR ELECTRICIANS	Couch, Howard L.,	336 Victoria Road, Drummoyne	Address	165m	East
MOTOR GARAGES/ENGINEERS	Couch, H. L.,	336 Victoria Rd., Drummoyne	Address	165m	East
WELDERS—ELECTRIC &/OR OXY	Couch, Howard L.,	336 Victoria Road, Drummoyne	Address	165m	East

* If no distance is provided, address no longer exists.

1974 HISTORICAL COMMERCIAL & TRADE DIRECTORY DATA

(200m Buffer)

Activity	Name	Address	Positional accuracy	Distance (m) *	Direction
Boats (All Types) - Builders &/or Repairers	Lucas Marina Pty Ltd	378 Victoria Place, Drummoyne	Address	On Site	
Marinas	Lucas Marina Pty Ltd	378 Victoria Place, Drummoyne	Address	On Site	
Motor Cars - Used	Easy Credit Car Sales	359 Victoria Place, Drummoyne	Address	21m	South
Motor Garages	Carnemolla Frank & Sons	364 Victoria Road, Drummoyne	Address	47m	East
Cosmetic - Mfrs &/or W'salers	Muron Enterprises	332 Victoria Place, Drummoyne	Address	185m	East

If no distance is provided, address no longer exists.

1980 HISTORICAL COMMERCIAL & TRADE DIRECTORY DATA

(200m Buffer)

Activity	Name	Address	Positional accuracy	Distance (m) *	Direction
Boats - Builders &/or Repairers	Lucas Marina Pty Ltd	380 Victoria Place, Drummoyne	Address	On Site	
Boats - Builders &/or Repairers	Sportcruisers Pty Ltd	380 Victoria Place, Drummoyne	Address	On Site	
Marinas	Lucas Marina Pty Ltd	380 Victoria Place, Drummoyne	Address	On Site	
Motor Cars - Used	Easy Credit Car Sales	359 Victoria Place, Drummoyne	Address	21m	South
Fishing Nets	Netmakers & Co	364 Victoria Place, Drummoyne	Address	47m	East
Motor Service Stations & Garages	B P Aust Ltd	364 Victoria Place, Drummoyne	Address	47m	East
Motor Service Stations & Garages	Carnemolia Frank & Sons	364 Victoria Place, Drummoyne	Address	47m	East

* If no distance is provided, address no longer exists.

1990 HISTORICAL COMMERCIAL & TRADE DIRECTORY DATA

(200m Buffer)

Activity	Name	Address	Positional accuracy	Distance (m) *	Direction
Air Conditioning - Commercial & Industrial	Technoffice	380 Victoria Place, Drummoyne	Address	On Site	
Boat & Yacht Builders &/or Repairers	Gladesville Bridge Marina	380 Victoria Place, Drummoyne	Address	On Site	
Boat Hire - Drive Yourself	Party Boats	380 Victoria Place, Drummoyne	Address	On Site	
Boat & Yacht Sales	Gladesville Bridge Yacht Sales	380 Victoria Place, Drummoyne	Address	On Site	
Boat & Yacht Sales	Sydney Boat Auctions	380 Victoria Place, Drummoyne	Address	On Site	
Cleaning Contractors- Commercial & Industrial	Window Cleaning Co Pty Ltd The	355 Victoria Place, Drummoyne	Address	33m	South
Fishing Net	Netmakers & Co	364 Victoria Road, Drummoyne	Address	47m	East
Motor Service Stations & Garages	Carnemolla Frank & Sons	364 Victoria Place, Drummoyne	Address	47m	East
Motor Service Stations & Garages	Gentex Racing Division	364 Victoria Place, Drummoyne	Address	47m	East
Importers &/Or Imported Products	Inter Hanno Pty Ltd	334 Victoria Place, Drummoyne	Address	165m	East
Boat Charter Services	B & J Yacht Charter	334 Victoria Place, Drummoyne	Address	165m	East
Boat Hire - Drive Yourself	B & J Yacht Charter	334 Victoria Place, Drummoyne	Address	165m	East

* If no distance is provided, address no longer exists.

Land Insight and Resources use a number of different address georeferencing methods and characterised them according to the following criteria: completeness (match rates) and positional accuracy. When address do not contain specific street numbers or a match is not found, records identified as being in the surrounding areas are included for reference.

Historical dataset positional accuracy and georeferencing results explanation

Positional accuracy	Georeferenced	Description
Address	Located to the address level	When street address and names fully matched.
Street	Located to the street centroid	When street names match but no exact address was found. Location is approximate.
Place	Located to the structure, building or complex	When building, residential complex or structure name match but no exact address was found. Location is approximate.
Suburb	Located to the suburb area	When suburb name match but no exact address was found. Location is approximate.
Not georeferenced	Not found	When it was not georeferenced, and address could not be found.

Section 3 - Other Environmental Constraints

3.1 FEDERAL, STATE AND LOCAL HERITAGE

Map 9 (200m Buffer)

Local Environment Plan (LEP) Heritage

Site Name	Site ID	Significance	Туре	Distance (m)*	Direction
Howley Park, Five Dock Point	1475	Local	ltem - General	0	North-west
Abutments Gladesville Bridge, Five Dock Point	1474	Local	ltem - General	75	North-west
House	1473	Local	Item - General	98	South-east
Boatshed	1472	Local	ltem - General	108	South-east
House	1469	Local	ltem - General	139	South-east
House	1470	Local	ltem - General	139	South-east
House	1471	Local	ltem - General	139	South-east

National Heritage List (NHL)

Site Name	Site ID	Class	Status	Distance (m)	Direction
Not identified	-	-	-	-	-

Register of the National Estate (RNE)

Site Name	Site ID	Class	Status	Distance (m)	Direction
Parramatta and Lane Cove Rivers Landscapes	14309	Natural	Indicative Place	0	onsite

Non-Aboriginal heritage item (Local)

Site Name	Site ID	Class	Status	Distance (m)	Direction
Not identified	-	-	-	-	-

Non-Aboriginal heritage item (SHR)*

Site Name	Site ID	Listing n ^o	Plan nº	Distance (m)	Direction
Not identified	-	-	-	-	-

*State Heritage Register

Commonwealth Heritage List (CHL)

Site Name	Site ID	Class	Status	Distance (m)	Direction
Not identified	-	-	-	-	-

World Heritage Area (WHA)

Site Name	Site ID	IUCN	Status	Distance (m)	Direction
Not identified	-	-	-	-	-

3.2 NATURAL HAZARDS & COASTAL MANAGEMENT

Map 10 (500m Buffer)

Bush Fire Prone Land (BPL)

Category	On the Property?	Within Record Search Buffer?
Not identified	-	-

Fire History (Wildfires and Prescribed Burns)

Category	On the Property?	Within Record Search Buffer?
Not identified	-	-

Flood Hazard Area

Name	On the Property?	Within Record Search Buffer?
Not identified	-	-

3.3 STATE ENVIRONMENTAL PLANNING POLICY (COASTAL MANAGEMENT)

Map 10 (500m Buffer)

Туре	On the Property?	Within Record Search Buffer?
Coastal Wetlands Proximity Area	Not identified	Yes
Coastal Wetlands	Not identified	Yes
Coastal Environment Area Map	Yes	Yes
Coastal Use Area Map	Yes	Yes

iz in

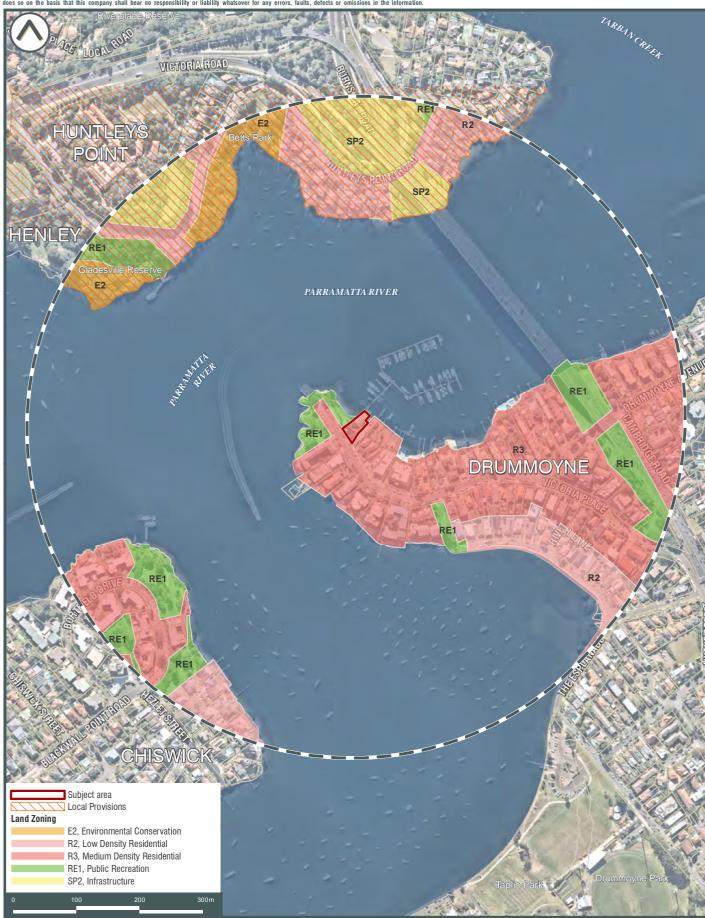
lh.

N

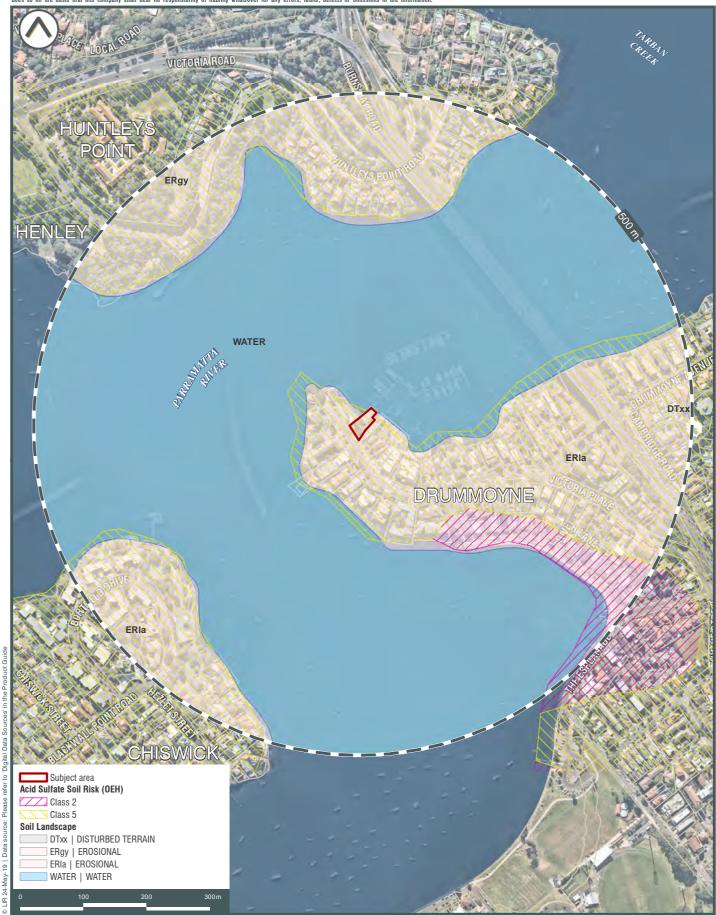
12:00 100

- A 4307/4 Daydream Street, Warriewood NSW 2102
- **T** 02 9979 1720
- E info@liresources.com.au
- W www.liresources.com.au

ATTACHMENT A

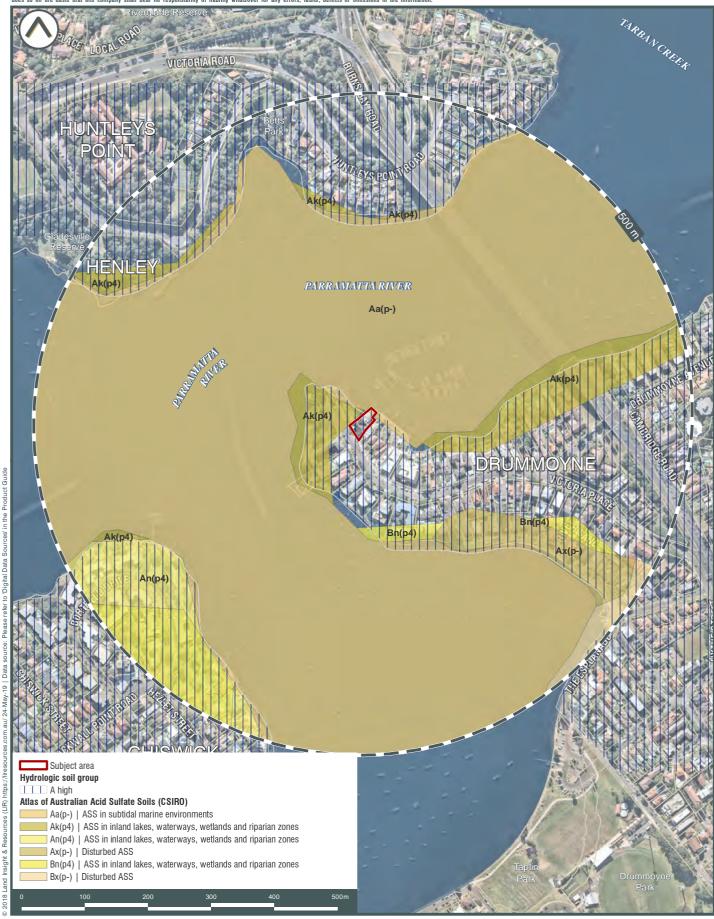

Report Maps

SUBJECT AREA AND SENSITIVE RECEPTORS


PLANNING CONTROLS

MAP 2

© LIR 24-May-19 | Data source: Please refer to 'Digital Data Sources' in the Product Guide



SOIL LANDSCAPES AND ACID SULFATE SOIL RISK

MAP 3a

• Ballina Coffs Harbour

Newcastle SITE SYDNEY • CANBERRA

Dubbo

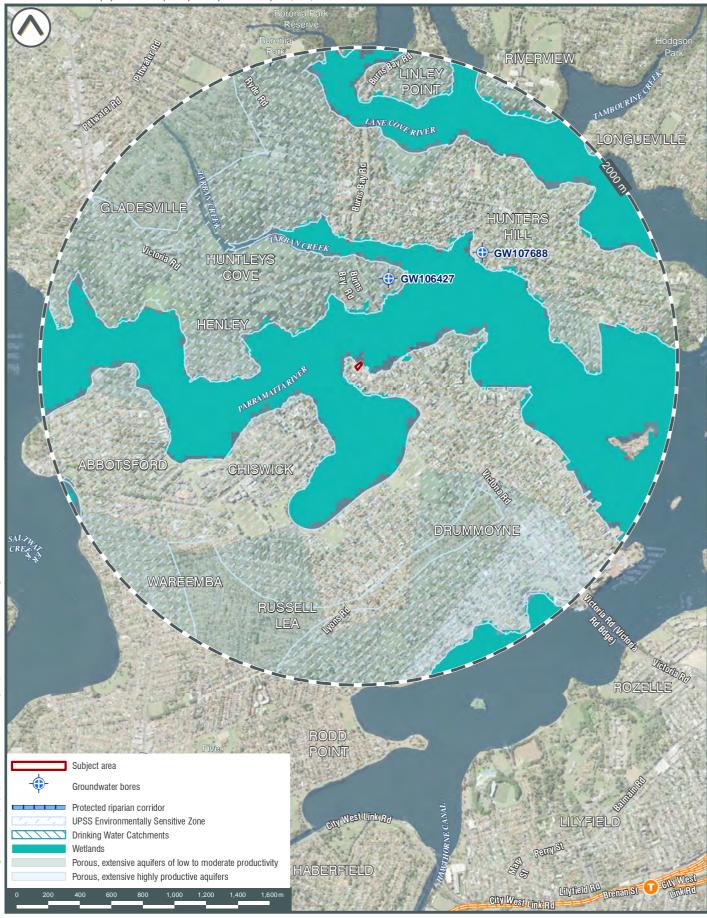
• MELBOURNE

Broken

Hill

ATLAS OF AUSTRALIAN ACID SULFATE SOILS AND SALINITY

MAP 3b

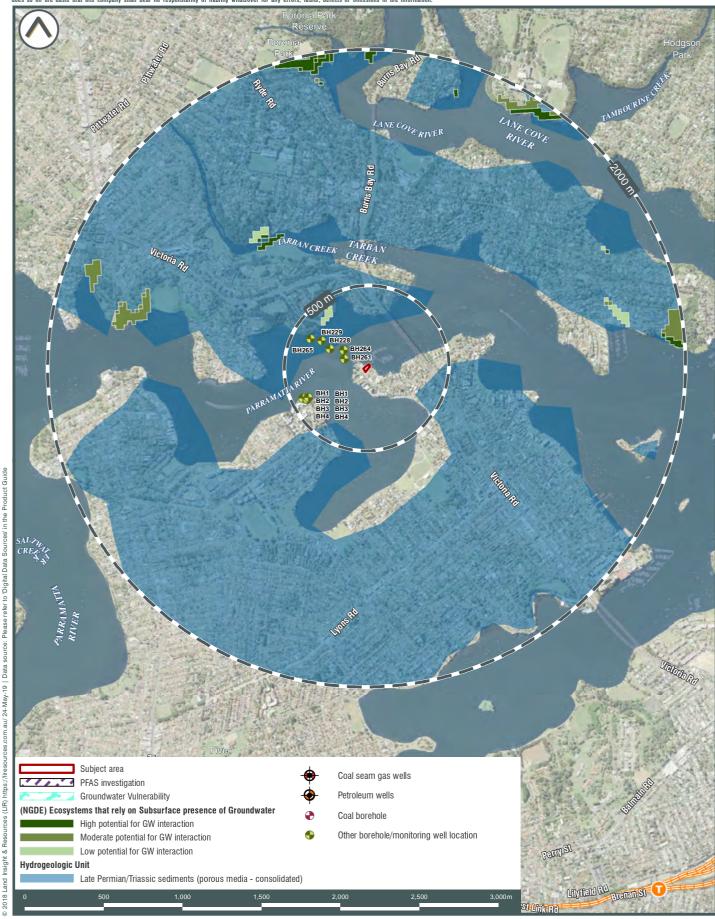


GEOLOGY AND TOPOGRAPHY

• Ballina Coffs Harbour Broken Hill Dubbo • Dubbo • Newcastle SITE • SYDNEY • CANBERRA • MELBOURNE

MAP 4

HYDROGEOLOGY AND GROUNDWATER BORES


Broken Hill NEW • SOUTH WALES • Dubbo • Newcastle SITE • SYDNEY • CANBERRA • MELBOURNE Sea

MAP 5a

.com.au/ 24-May-19 | Data source: Please refer to 'Digital Data Sources' in the Product Guide

urces (LIR) https://liresources

© 2018 Land Insight & Resou

HYDROGEOLOGY AND OTHER BOREHOLES

Broken Hill NEW SOUTH WALES SITE SYDNEY CANBERRA MELBOURNE Sea

MAP 5b

EPA RECORDS AND OTHER REGULATORY CONTAMINATION ISSUES

Broken Hill NEW • SOUTH WALES • CANBERRA • MELBOURNE • See

MAP 6

Ballin offs

Harbour

• Dubbo • Newcastle SITE • SYDNEY • CANBERRA

• MELBOURNE

Broken

Hill

POTENTIALLY CONTAMINATING ACTIVITIES

MAP 7a

CURRENT COMMERCIAL AND TRADE DATA

LICENSING UNDER THE POEO ACT 1997 AND NPI FACILITIES

MAP 8

© LIR 24-May-19 | Data source: Please refer to 'Digital Data Sources' in the Product Guide

Broken

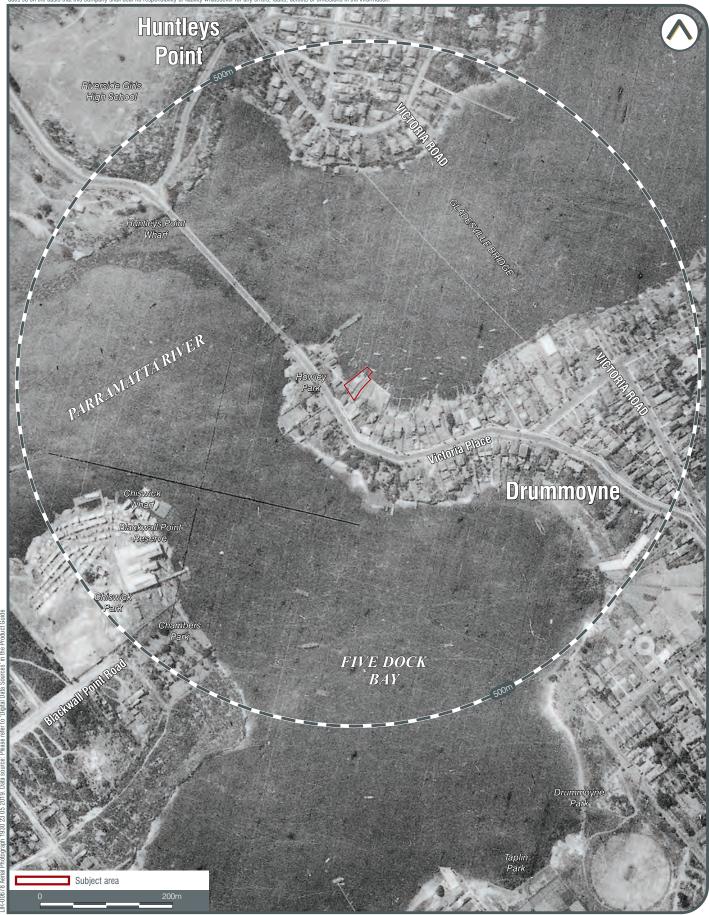
Hill

• Ballina Coffs Harbour

• Dubbo • Newcastle SITE • SYDNEY • CANBERRA

• MELBOURNE

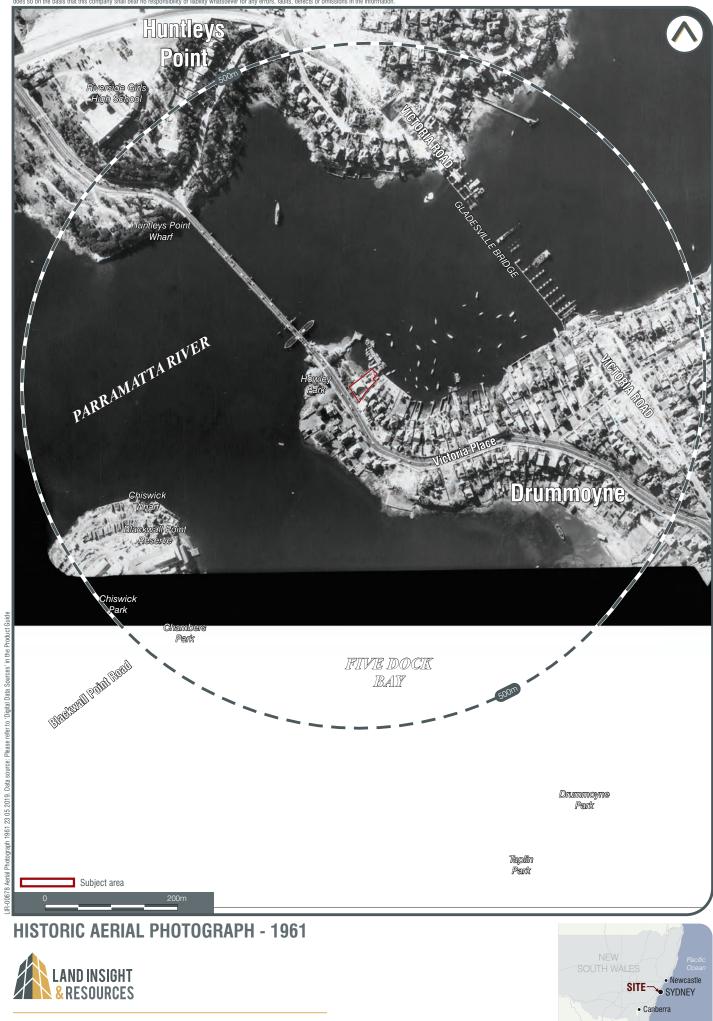
NATURAL HAZARD AND COASTAL MANAGEMENT


MAP 10

ATTACHMENT B

Historical Imagery

HISTORIC AERIAL PHOTOGRAPH - 1930



HISTORIC AERIAL PHOTOGRAPH - 1943

HISTORIC AERIAL PHOTOGRAPH - 1965

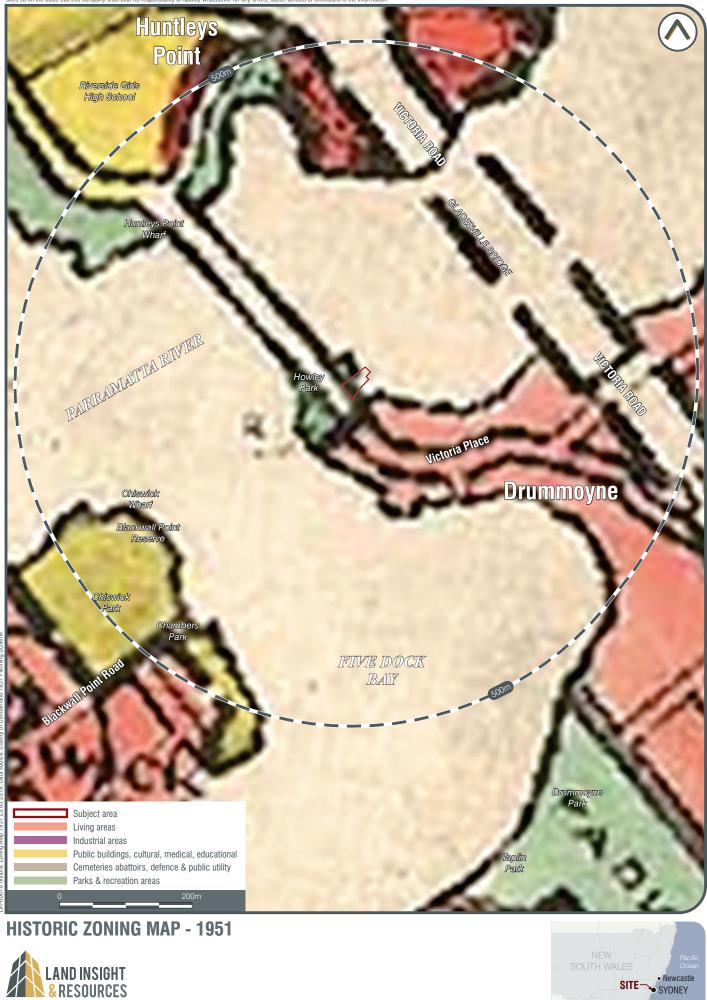
HISTORIC AERIAL PHOTOGRAPH - 1991

HISTORIC AERIAL PHOTOGRAPH - 2002

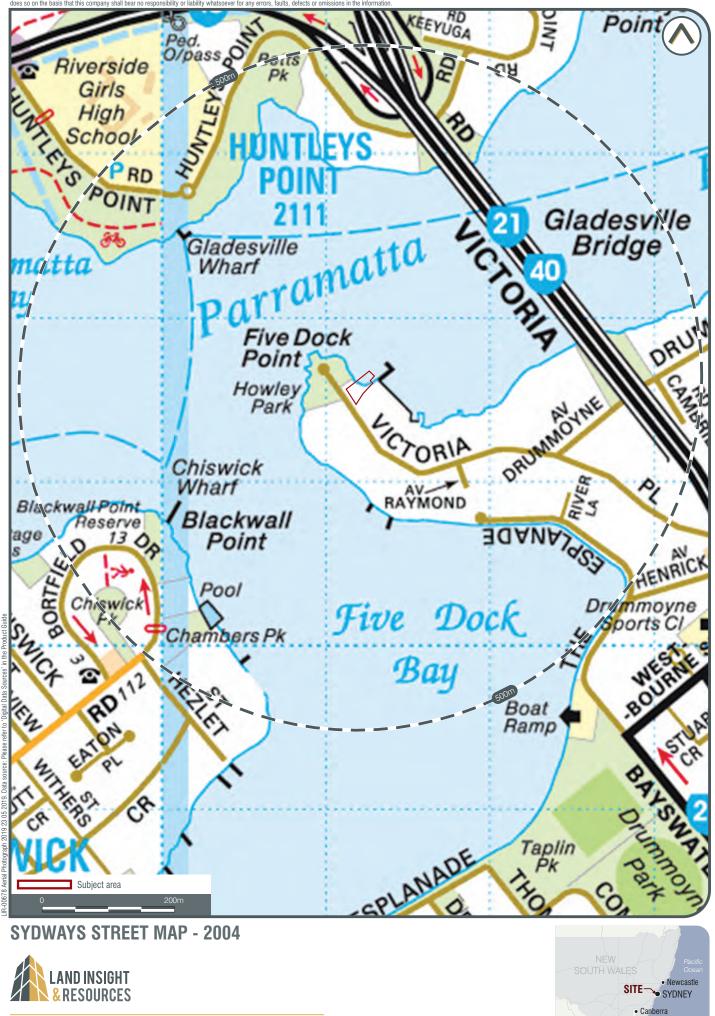
HISTORIC AERIAL PHOTOGRAPH - 2004

HISTORIC AERIAL PHOTOGRAPH - 2010

HISTORIC AERIAL PHOTOGRAPH - 2017


IR-00678 Aerial Photograph 2017 23 05 2019. Data source: Please refer to 'Digital Data Sources' in the Product Guide

HISTORIC AERIAL PHOTOGRAPH - 2019



• Canberra

LIR-00678 Historic Zoning Map 1951 23 05 2019. Data source: County of Cumberland 1951 Planning Scl

Appendix E Calibration Certificates

Instrument Serial No.

PhoCheck Tiger T-107189

Air-Met Scientific Pty Ltd 1300 137 067

Item	Test	Pass			Comments	5
Battery	Charge Condition	1				
	Fuses	1				
	Capacity	1				
	Recharge OK?	1				
Switch/keypad	Operation	1				
Display	Intensity	1				
	Operation (segments)	V				
Grill Filter	Condition	1				
	Seal	1				
Pump	Operation	1				
	Filter	1				
	Flow	1				
	Valves, Diaphragm	1				
РСВ	Condition	1				
Connectors	Condition	1				
Sensor	PID	1	10.6 ev			
Alarms	Beeper	1	Low	High	TWA	STEL
	Settings	1	50ppm	100ppm		
Software	Version	1				
Data logger	Operation	1				
Download	Operation	1				
Other tests:						

Certificate of Calibration

This is to certify that the above instrument has been calibrated to the following specifications:

Diffusion mode Aspirated mode

Sensor	Serial no	Calibration gas and concentration	Certified	Gas bottle No	Instrument Reading
PID Lamp		98ppm Isobutylene	NATA	SY137	97.8ppm
Calibrated by:	Sra	Whia	Sarah Lian		1

Calibrated by:

Sarah Lian

Calibration date:

Next calibration due:

30/11/2019

3/06/2019

Instrument YSI Quatro Pro Plus Serial No. 18L102024

Comments Test Pass Item Charge Condition 1 Battery 1 Fuses 1 Capacity Operation 1 Switch/keypad 1 Intensity Display 1 Operation (segments) Condition 1 Grill Filter 1 Seal Condition 1 PCB Condition 1 Connectors 1. pH 1 Sensor 2. mV 1 3. EC 1 4. D.O 1 1 5. Temp Beeper Alarms Settings Software Version Data logger Operation Download Operation Other tests:

Certificate of Calibration

This is to certify that the above instrument has been calibrated to the following specifications:

Sensor	Serial no	Standard Solutions	Certified	Solution Bottle Number	Instrument Reading
1. pH 7.00		pH 7.00		330737	pH 6.96
2. pH 4.00		pH 4.00		324985	pH 3.97
3. pH 10.00		pH 10.00		324189	pH 9.75
3. mV		231.8mV		324355/325421	233mV
4. EC		2.76mS		322349	2.74mS
5. D.O		0.00ppm		329994	0.01ppm
6. Temp		20.6°C		MultiTherm	21°C

Calibrated by:

Sarah Lian

Calibration date:

12/06/2019

Stallic

Next calibration due:

12/07/2019

Oil / Water Interface Meter

Instrument Geotech Interface Meter (30M) Serial No. 4063

Item	Test	Pass	Comments
Battery	Compartment	1	
	Capacity	1	
Probe	Cleaned/Decon.	1	
	Operation	1	
Connectors	Condition	1	
		1	
Tape Check	Cleaned	1	
Connectors	Checked for cuts	1	
Instrument Test	At surface level	1	
1			

Certificate of Calibration

This is to certify that the above instrument has been cleaned and tested.

Calibrated by: K. Ro		Kylie Boardman
Calibration date:	12/06/2019	

Next calibration due:

11/08/2019

Appendix F RPD Tables

				B	TEX		TRH		PAH						Metals				
			Benzene	Toluene	Ethylbenzene	Xylene Total	C6-C10 (F1 minus BTEX)	Benzo(a)pyrene	Naphthalene	Total PAH	As	3	5	5	ïZ	4	Ř	L L L L L L L L L L L L L L L L L L L	TBT
			mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
EQL			0.2	0.5	1	3	25	0.5	1	0.5	4	0.4	1	1	1	1	0.1	1	1
Field ID	Matrix Type	Date		•		•	•	•	•	•	•	•	•	•	•	•	•		•
BH02 (1.9)	Soil	4/06/2019	0.10	0.25	0.50	1.50	12.50	0.20	0.50	0.51	2.00	0.20	15.0	38.0	9.0	25.0	0.05	46.0	0.0046
DUP-1	Soil	4/06/2019	0.10	0.25	0.50	1.50	12.50	0.02	0.50	0.03	2.00	0.20	9.0	25.0	4.0	15.0	0.05	22.0	0.0018
	·	·	0	0	0	0	0	172	0	181	0	0	50	41	77	50	0	71	88
BH02 (1.9)	Soil	4/06/2019	0.10	0.25	0.50	1.50	12.50	0.20	0.50	0.51	2.00	0.20	15.0	38.0	9.0	25.0	0.05	46.0	0.0046
TRIP-1	Soil	4/06/2019	0.05	0.30	0.05	0.15	10.00	0.25	0.25	0.25	2.30	0.20	17.0	34.0	8.8	36.0	0.05	60.0	0.0011
	•	•	67	18	164	164	22	22	67	68	14	0	13	11	2	36	0	26	123

				BT	ΓEX		TRH	P	AH				Me	tals			
			Benzene	Toluene	Ethylbenzene	Xylene Total	C6-C10 (F1 minus BTEX)	Benzo(a)pyrene	Naphthalene	As	G	ö	G	īZ	Pb	Ř	nz
			ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
EQL			1	1	1	3	10	1	1	1	0.1	1	1	1	1	0.05	1
Field ID	Matrix Type	Date	•	•	•	•						•			•		
MW02	Water	13/06/2019	7.0	43.0	6.0	30.0	70.0	0.5	0.5	7.0	0.1	7.0	4.0	6.0	0.5	0.40	5.0
DUP-1	Water	13/06/2019	7.0	40.0	6.0	27.0	74.0	0.5	0.5	7.0	0.1	7.0	6.0	8.0	0.5	0.40	22.0
		•	0	7	0	11	6	0	0	0	0	0	40	29	0	0	126
MW02	Water	13/06/2019	7.0	43.0	6.0	30.0	70.0	0.5	0.5	7.0	0.1	7.0	4.0	6.0	0.5	0.40	5.0
TRIP-1	Water	13/06/2019	6.0	39.0	5.0	25.0	60.0	2.0	5.0	7.0	0.2	10.0	4.0	7.0	1.0	0.50	5.0
		÷	15	10	18	18	15	120	164	0	120	35	0	15	67	22	0

Appendix G QA/QC Assessment

Table G-1 QA/QC Assessment

Data Quality Objective	Sampling Frequency	Frequency Achieved?	DQI	DQI Met?
Precision				
Intra-Laboratory Field Duplicates	1/20 samples	Yes	>5xLOR: 50% RPD	Yes, noting that some PAHs (soil) and metals (soil and groundwater) exceeded RPDs (71- 181%) due to sample heterogeneity.
Inter-Laboratory Field Duplicates	1/20 samples	Yes	>5xLOR: 50% RPD	Yes, noting that some hydrocarbons (soil), PAHs (soil and groundwater) and metals (soil and groundwater) exceeded RPDs (67- 164%) due to sample heterogeneity.
Laboratory duplicates	1/20 samples	Yes	>5xLOR: 50% RPD	Yes
Laboratory method	1/10	Yes	<lor< td=""><td>Yes</td></lor<>	Yes
blanks	samples		Not required for asbestos	
Accuracy				
Matrix spikes	1/10 samples	Yes	Acceptable recoveries: 70 to 130% for metals and inorganics 60-140% for organics 10-140% for sVOC and speciated phenols Not required for asbestos	Yes.
Laboratory control spike	1/10 samples	Yes	As Matrix spikes Not required for asbestos	Yes.
Surrogate spike	1/10 samples	Yes	As Matrix spikes Not required for asbestos	Yes.
Representativeness				
Sampling handling storage and	All	Yes	Received by laboratory	Yes

Data Quality Objective	Sampling Frequency	Frequency Achieved?	DQI	DQI Met?
transport appropriate for media and analytes			cooled and with container in good condition	
Rinsate blanks	NA	NA	<lor< td=""><td>NA</td></lor<>	NA
Trip Spike and Trip Blank	1/event 1/event	Yes Yes	>89% <lor< td=""><td>Yes Yes</td></lor<>	Yes Yes
Samples extracted and analysed within holding times.	All	Yes	Hold Times: 7 days - organics 6 months – inorganics	Yes
Comparability				
Standard operating procedures used for sample collection and handling (including decontamination)	All Samples	Yes	Yes	Yes
Standard analytical methods used for all analyses	All Samples	Yes	Yes	Yes
Consistent field conditions, sampling staff and laboratory analysis	All Samples	Yes	Yes	Yes
Limits of reporting appropriate and consistent	All Samples	Yes	Yes	Yes
Completeness				
Soil description and COCs completed and appropriate	All Samples	Yes	Yes	Yes, borehole logs and laboratory certificates are presented in Appendices H and C, respectively.
Appropriate documentation for testing	All Samples	Yes	Yes	Yes
Data set to be 95% complete after validation	All Samples	Yes	Yes	Yes

Appendix H Borehole Logs

DRILLING COMPANY BG Drilling DRILLING METHOD Solid Flight Auger (SFA) TOTAL DEPTH 1.4m bgs

COORDINATES -COORD SYS -SURFACE ELEVATION -LOGGED BY TC CHECKED BY DT

СОМ	MENT	S O = Odour, S = S	taining	g, ACM = Asbes	stos Con	taining Material	
Depth (m)	DIA	Samples	Water	Well Installation	Graphic Log	Material Description	Additional Observations
-	0.1	/BH01 (0.1)			\bigotimes	Fill: Clayey sand, light brown with inclusions of sandstone.	No O, S, ACM
- - 0.2 - - - 0.4	0.5						
_		/BH01 (0.5)	₽			As above, wet.	No O, S, ACM
- 0.6 - - - 0.8							
- - - 1 -							
- 1.2 -							
- 1.4 -	1.4	/BH01 (1.4)			$\times\!\!\times\!\!\times$	End of hole at 1.4 m bgs (refusal on sandstone	
- 1.6						bedrock)	
- - 1.8 -							
-2							
_ 2.2							
- 							
- 2.6							
_ 2.8 							
- 3 							
_ 3.2 							
_ 3.4							
_ 3.6							
- 3.8 -							
- -						entechnical nurnoses	Page 1 of 1

Disclaimer This bore log is intended for environmental not geotechnical purposes.

Page 1 of 1

DRILLING COMPANY BG Drilling DRILLING METHOD SFA TOTAL DEPTH 2.0m bgs

COORDINATES -COORD SYS -SURFACE ELEVATION -LOGGED BY TC CHECKED BY DT

сом	MENT	S O = Odour, S = S	taining	g, ACM = Asbes	tos Con	taining Material	
Depth (m)	PID	Samples	Water	Well Installation	Graphic Log	Material Description	Additional Observations
- 0.2 - 0.4 - 0.6 - 0.8 - 1 - 1.2 - 1.4 - 1.6 - 1.8 - 2.2 - 2.4 - 2.6 - 2.8 - 3.6 - 3.8 - 3.8		/BH02 (0.1)	Σ			Fill: Clayey gravel, brown to light brown.	No O, S, ACM Poor retrieval of material due to saturated, gravelly nature. Sample collected from base of auger (1.9m), but likely a combination of saturated materials ranging from 1-2m bgs. Well extent to 1.4m bgs, as borehole collapsed with removal of auger.

Disclaimer This bore log is intended for environmental not geotechnical purposes.

Page 1 of 1

DRILLING COMPANY BG Drilling DRILLING METHOD SFA TOTAL DEPTH 0.2m bgs

COORDINATES -COORD SYS -SURFACE ELEVATION -LOGGED BY TC CHECKED BY DT

сом	MENT	`S O = Odour, S = S	taining	g, ACM = Asbes	stos Con	taining Material	
Depth (m)	DIA	Samples	Water	Well Installation	Graphic Log	Material Description	Additional Observations
		/BH03 (0.2)	⊻			Fill: Gravelly clay, brown, wet, with inclusions of sandstone	No O, S, ACM
0.2	0.3					End of hole at 0.2 m bgs (refusal on sandstone bedrock)	
0.4							
0.6							
0.8							
· 1							
1.2							
1.4							
• 1.6							
· 1.8							
2							
• 2.2							
2.4							
2.6							
2.8							
- 3							
3.2							
3.4							
· 3.6							
3.8							

Disclaimer This bore log is intended for environmental not geotechnical purposes.

produced by ESlog.ESdat.net on 02 Jul 2019

DRILLING COMPANY BG Drilling DRILLING METHOD SFA TOTAL DEPTH 0.5m bgs

COORDINATES -COORD SYS -SURFACE ELEVATION -LOGGED BY TC CHECKED BY DT

COMMENTS O = Odour, S = Staining, ACM = Asbestos Containing Material										
Depth (m)		Sames	Water	Well Installation	Graphic Log	Material Description	Additional Observations			
ă -	DID	ග් /BH04 (0.1)	Ň		5 XXX	Fill: Gravelly clay, grey to dark grey, damp.	No O, S, ACM			
- - - 0.2	0.3				\bigotimes		Inclusions of wood.			
-					\bigotimes					
- 0.4	0.3	/BH04 (0.5)			\bigotimes					
- 0.6	0.5					End of hole at 0.5 m bgs (refusal on sandstone bedrock)				
- 0.8										
0.0										
- 1										
- 1.2										
- 1.4										
- 1.6										
- 1.8										
- 2										
- 2.2										
- 2.4										
- 2.6										
- 2.8										
- - 3 -										
- 3.2										
-										
- 3.4										
- 3.6										
- 3.8										

Disclaimer This bore log is intended for environmental not geotechnical purposes.

Page 1 of 1

produced by ESlog.ESdat.net on 02 Jul 2019

Appendix I Field GME Logs

Groundwater Well Sampling Data Form

						Job In	rormatio	n	-					
ate: 🙀	D (3.	6-(9				-								
Project Name: Glabs-Jly Margue F									Project Number: { 8 \ 6					
Site Location:									Operator: E.M					
Well ID: MW 02									Weather: overcast.					
						Equ	ipment							
Vater qual	lity equipme	ent descript	ion:											
1999 A. 1997	robe descri													
urging eq			Bailer	type:	Plastic	т	eflon							
olease cirl	ice)		Pump	type:	Peristalti	Su	bmersible	e Mic	ro-purge	Amazon	Othe	er:		
epth of in	stalled tubi	ng (mTOC)	:											
				We	II Gaugin	g and Pu	rge Volu	me Cal	culations	-				
asing Dia	ameter		25mm				125mm 15		50mm 200mm 250mm		300mm			
Conversion			0.98			31.	4 4	9.1	70.7	125.7	196.3			
volume in fac	tor I (m)	Water level		Column	7.85	2	Der	oth to Pro	duct (if pres	ent)	r = radius in	cm		
Vater Col	m (-)	0.37 m onversion F	(=) 0.	<u>m</u>	Well Volun	ne L	-	-	m		h = height of	water column in cm		
					N	later Qua	lity Para	meters				(
Beginning	purge time	10:1	0					Ending purge time:						
Litres	Time	рН	Temp °C	Cond	DO	Redox mV	SWL mTOC	Comments / observations				ns		
	1-112			mS/cm	ppm			1 1	11 1	1 1		P		
0.25	10:13	1120	17.1	1.207	6.31	-12.4	0.66	513	atly In	bid , n	to adding	no steph		
2.0	10:17	11.22	17.1	1.207	6.92	-92.	0.78	~			stor se	elarge colled.		
0.075	10:20	11.24	17.1	1.217	7.04	-236.0	0.88					V		
1.0	10:23	11.25	17.1	1.224	6.62	-239.5	1.04	11 11						
1.25	10.26	11.24	17.2	1-215	8-16	- 301.	11.1 0		12 .2	incree	sing the	hal'de		
10	10:30	11.24	17.2	1.224		- 245.	0 1.09				9	8		
1-2	10.00	1145	1	1.6-1	0-11	- ().	0 1.01	K	Duc	=	1.1			
		-	-	-					JK 7	Samp	let.			
								-		1				
		1						-						
				1		1								
	1													
		-		-	-		-	1						
Ciabi	lieation			-				Examp	le: clear / sli	ghtly cloudy	/ turbid / verv	turbid / no odour /		
Stabilisation Criteria		+/- 0.05	+/- 10%	+/- 3%	+/- 10%	+/- 10%		slight o	dour / odou	r / strong od	lour, and chang	ges in pumping rate		
		Total Wel					1	-	*pH, ter	np, cond read	dings not necess	ary if well is purged dry		
Did field r	parametere	Actual amo stabilise?		prior to sam		ry purged?	YN							
Dia neia p	Jarameters	atabiliae (1 14 14		and from u		QC Cheo	cks						
Marine	oloonin	molina	inmont une	d for these	samples?	1.1676	ac one		YNI					
		impling equ					002		YN					
6.00 C. 200.00		impling equ			clea from (contaminati	UIT			NA				
		n of equipme								NA				
1.		esent in via					ature of							
Was sample for metals field filtered prior to preservations?										NA	ample ID A	1-918-2		
Duplicate	e sample co	llected?		_				-	YNI	Duplicate sa	ample ID	1111		

Groundwater Well Sampling Data Form

						Job In	formatio	n						
ate:	17.	6.19												
roject Name: Glades-ille Marina GME									Project Number: (XI66					
te Locatio						Operato	r: E.A	-						
ell ID:	ML	102					Weathe	r: or	ocal					
						Equ	uipment							
ater qual	lity equipme	ent descripti	on:											
	robe descri													
irging eq	uipment:		Bailer	type:	Plastic	-	Teflon			Sec.				
lease cirl	lce)		Pump	type:	Peristalti	c) s	ubmersible	e Mic	cro-purge	Amazon	Oth	ner:		
epth of in	stalled tubi	ng (mTOC):			_		_							
				We	II Gaugin	g and Pu	urge Volu	ime Cal	culations					
ising Dia	ameter		25mm	50mi	m 100n	im 12	5mm	150mm	200mm	250mm	300mm			
	n Factor		0.98	1.96	7.85	31	.4 4	19.1	70.7	125.7	196.3	1		
tal Well	Depth (-)	Water level	(=) Wate	r Column			De	pth to Pro	oduct (if pres	sent)	r = radius i	n cm of water column in cm		
ater Colu	umn (x) C	0.81 m onversion F	actor (=) L	itres per 1	Well Volun	ne L			m		n noigin			
					W	ater Qua	ality Para	meters						
ginning	purge time	9:20)					Ending	purge time:					
tres	Time	рН	Temp °C	Cond mS/cm	DO ppm	Redox mV	SWL	Comments / observations				ions		
0.25	9:23	7.23	197	49.16		179.7	1.04		-1.					
	1	1.63	11.4	7.10	1.01		1.01			recha		he and		
20	1.00	7.26	:00	100 (1	17.07	17. 1	1.16	10	erchist,	noo	dour	no shrow		
5-2	9:27	1.20	19.2	48.61	7.02	178.1	1.10	purged dry- sampled						
_				-			-	ps	ged	dry-	Sand	20-		
	9:40		-	-	-	-	-	-	U	5				
	1						-	-						
		1				1								
					1									
		-		-	1	-		1						
				-			+	-						
Ctab	ilisation	-	-	-			-	Examp	ole: clear / s	lightly cloudy	/ turbid / ver	ry turbid / no odour /		
	iteria	+/- 0.05	+/- 10%	/- 10% +/- 3% +/- 10% +/- 10%				slight odour / odour / strong odour, and changes in pumping rate						
		Total Wel	I Volume	r prior to san	apling				*pH, te	mp, cond read	dings not nece	ssary if well is purged dry		
Did field	parameters	stabilise?			s the well d	ry purged	Y N							
						Field	QC Che	cks						
Nas pre-	cleaning sa	ampling equ	ipment us	ed for these	e samples?	1			YN					
		ampling equ					tion?		YN					
		n of equipme							YN	NA				
		esent in vial			?				YN	NA	1-01	12001		
		tals field filte							YN	NA	-1-9M	(upr .		
vvas san									1 1 1					

Appendix J Dangerous Goods Search

37 Blackbutt Avenue Pennant Hills, N.S.W. 2120 Telephone: (02) 9629 5564 Facsimile: (02) 9629 5554

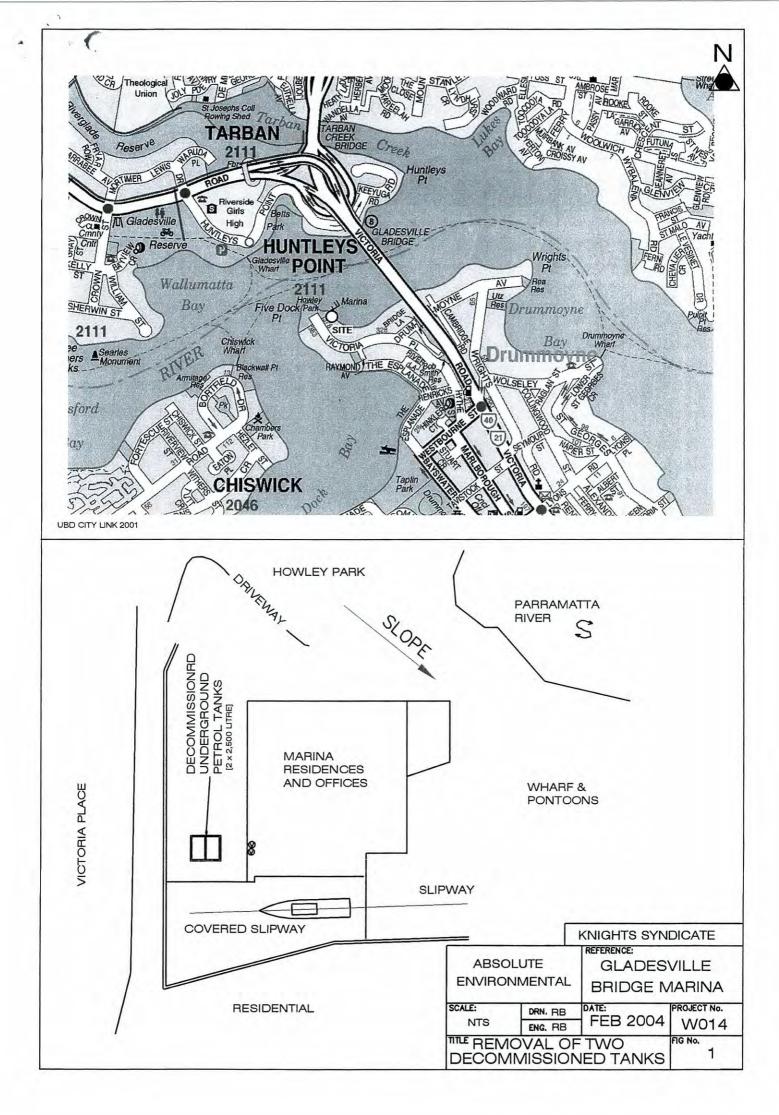
3rd February 2004

KNIGHT'S SYNDICATE PTY. LTD., 37 BLACKBUTT AVENUE, PENNANT HILLS 2120 ABN 66 320 664 665 (THE COMPANY) acknowledges and agrees to

GHT'S SYNDICATE PTY. LT

GLADESVILLE BRIDGE MARINA that all risks and title in the 2 x 500gallon ug tanks ex GLADESVILLE BRIDGE MARINA VICTORIA PL DRUMMOYNE passes to (THE COMPANY) from

GLADESVILLE BRIDGE MARINA


The tanks were transported by us/you for a safe and legal disposal at our quarry, 105 SCHOFIELDS ROAD, ROUSE HILL.

They will not be sold for any purpose.

the company seal of KNIGHT'S SYNDICATE PTY. LTD. was hereunto affixed by J. A. KNIGHT in the presence of J. T. KNIGHT on 3rd February 2004

7 Knegky

WORKCOVER NEW SOUTH WALES DETAILS OF LICENCE FOR KEEPING DANGEROUS GOODS ON 1 December 2003

Licence Number 35/007680	Expiry Date 15/08/1993	No of Depots. 2
Licensee Details		
Licensee GLADESVILLE BRID	GE MARINA P/L	
Trading name		
Postal Address 380 VICTORIA	PL DRUMMOYNE NSW 2047	
Licensee Contact Ph. 81 201	14 Fax.	
Site Details		
Premises Licensed to Keep Da GLADESVILLE BRIDGE MAN 380 VICTORIA PL DRUMMO	RINA P/L	
Nature of Site PRIVATE DWELL	ING	
Major Supplier of Dangerous (Goods NOT APPLICABLE	
Emergency Contact for this Si	te	
Site staffing		
Details of Depots		
Depot No. Depot Type	Goods Stored in Depot	Qty
1 UNDERGROUND TANK 2 UNDERGROUND TANK	Class 3 Class 3	2300 L 2300 L

Status: CANCELLED

with to could burdle

35-007680

Comments:

U/G tanks filled with sand/concrete/earth and sealed off

- □ All dgoods removed from site
- Only exempt quantities of dgoods at site
- U/G tanks now used for storing diesel
- U/G tanks removed from site
- Duplicate of licence
- U/G tank abandoned (method unknown)

197

•

4

MANUALS\CANCEL.FRM

GHT'S SYNDICATE PTY. LTD. A.C.N. 002 947 588

37 Blackbutt Avenue Pennant Hills, N.S.W. 2120 Telephone: (02) 481 9097 Facsimile: (02) 875 1508.

new telephone 96295564 new facsimile 96295554

19th December, 1996

THE DANGEROUS GOODS LICENCING SECTION WORKCOVER AUTHORITY LOCKED BAG 10 POST OFFICE CLARENCE STREET SYDNEY 2000

CERTIFICATE OF ABANDONMENT WITH DRY AMBER SAND OF 2x500 GALLON UNDERGROUND STORAGE TANKS AS PER AUSTRALIAN STANDARDS AS1940-1993

- 1. dangerous goods licence number 35-007680
- 2. 380 Victoria Place, Drummoyne
- 3. GLADESVILLE BRIDGE MARINA
- 4. 2x500 gallon
- 5. via the dip between the retaining wall for road and existing marina wall (5m3 gap)
- 6. fill with dry amber sand
- 7. sealed vent lines with concrete plug (dip/bowser lines previously removed)
- 8. KNIGHT'S SYNDICATE PTY.LTD
- 9. PAUL GOODWIN 96293864

yours faithfully KNIGHT'S SYNDICATE PTY.LTD J.T.KNIGHT

c.c.to GLADESVILLE BRIDGE MARINA

1996

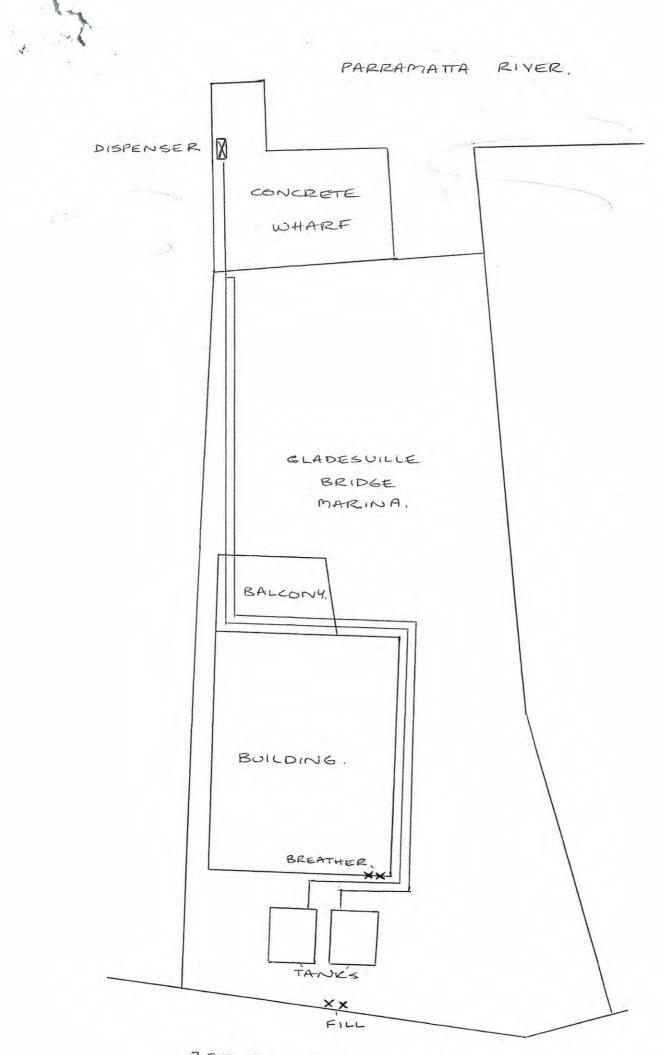
	WORKCO	VER NEW S	OUTH WALES	
	DETAI	LS OF LICENCE FO		
Licen	ce Number 35/007680	Expiry Date 15	/08/93	
<u>Licensee D</u>	etails			
	See GLADESVILLE BRIDO	SE MARINA P/L		
	ng name			
	Address 380 VICTORIA		2047	
	see Contact Ph. 81 201	4		
Site Details	<u>}</u>			
Premis	ses Licensed to Keep Dang 380 VICTORIA PL DRUMMOYNE 2047			
Nature	e of Site PRIVATE DWELL	ING Supplier NO	APPLICABLE	
	ency Contact ph.			
Site st	affing			
Details of D	Depots			
Depot	No. Depot Type	Go	ods Stored in Depot	Qty
1	UNDERGROUND TAM	NK Class 3		2300 L
2	UNDERGROUND TAM			2300 L
				2300 [

'91 15:51 W:C.R.A. OF NSW 61 2 6622834 SUI.

C R P.1

Form DGI

1,


WORKCOVER AUTHORITY DANGEROUS GOODS ACT, 1975

UCENCE No. 35-007680

APPLICATION FOR LICENCE (or AMENDMENT or TRANSFER of LICENCE)* FOR THE KEEPING OF DANGEROUS GOODS

	Aug			(* Delete	whichever is not required)								
	ant in full (see Item tory notes - page 4)	P. B.	& E. M. 500	JTHCOMBE.									
Trading name o name (if any)			GLADESVILLE BRIDGE MARINA PTY. LTD.										
Postal Address		380 VICTORIA PLACE, DRUMMOUNE, Postcode 2047.											
Address of the p (including Str	premises to be licensed. reet No.)	380 VICTORIA PLACE, DRUMMOYNE. Postcode 2047.											
Nature of premi Explanatory no	ses (See item 2 - otes - page 4)	MA	MARINA,										
Telephone num	ber of applicant	STD Co	de (02)) Number 812014									
Particulars of ty	pe of depote and maximur	n quantiti	es of dangerous goods to be	kept at any one time.									
Depot number	Type of depot (See item 3 - Explar notes - page 4)	natory	Storage capacity	Dangerous goods Product being stored	C&C Office use only								
1	UG TANK		2,250 LTRS	PETROL 3.1	2 020 22×2								
2 .			2,250 LTRS.	PETROL 3-1.	2 020 22×2								
3				·									
4													
5													
6				007 1991									
7			15	11 OCT 1991									
8	-		519										
9													
10													
11													
12		_											
Has site plan bee Dangerous Goo	en approved by the ods Branch?	Yes No	If yes, no plans re If no, please attac checked	quired. h site plan, or provide sketch plan ove by an Accredited	rleaf. which has been consultant								
Have premises p	MARINA UP TR	Yes	11, yes, state name 82; GLADESV	of previous occupier, and licence No.									
Name of all com	pany supplying flammable	liquid (if	applicable).										
For external expl	losives magazine(s), please	fill in pa	Signature of applicant.	Southiomme	2617191.								
FOR OFFICE US	EONLY	<u></u>	CERTIFICATE OF I										

being an Inspector under the Dangerous Goods Act, 1975, do hereby certify

15

380 VICTORIA PLACE,

FROM DRUMMOTHE COUNCIL_

DRUMMOYNE MUNICIPAL COUNCIL CIVIC CENTRE DRUMMOYNE

(WED)05.15.'91 12:25

ALL CORRESPONDENCE TO THE TOWN CLERK P.O. BOX 117 DRUMMOYNE 2047 TELEPHONE: 819 6555 FAX: 819 6803 DX 8598 BURWOOD IN REPLY AND FOR PERSONAL CONTACT PLEASE QUOTE

PAGE 2

Attention: Ms J Fillding Industrial Relations Services FAX 744 3648

decay to block the second second second second

SK/JS 143.28 - Mr Kourepis

NO.5

15 May, 1991

Dear Madam,

PREMISES 380 VICTORIA PLACE, DRUMMOYNE

values on toor

Could you please advise Council if the abovementioned premises has a licence to store flammable and combustible liquids (petrol or diesel), the licensee, the number of litres stored on site, the location of the storage tanks, the method of unloading and the location of the tanker discharge point.

Also, could you advise if the delivery and discharging of flammable and combustible liquids (petrol or diesel) from a local roadway over the footpath into a residential/commercial premises is allowable under the Act, or would it require consent and which authority would consent have to be obtained from.

Were there previous alterations or any increase in size of the fuel storage tanks at the subject premises and if tankers delivering fuel negotiate the access track over Howley Park.

should you have any enquiries please do not hesitate to tact Mr S Kourepis of Council's Town Planning Department on -6555. 819 6855

Your early response would be most appreciated.

alteratus from 82-

Yours faithfully,

T. DESMOND DOVER TOWN CLERK

and maximum for all of the second points and maximum quantities of dangerous goods to be kept at any one time. PLEASE ATTACH SITE PLAN and maximum quantities of dangerous goods to be kept at any one time. e of depot Storage capacity Dangerous goods Product being stored Office use only C & C Office use only C graceset 2.200 Product being stored Office use only C graceset 2.200 INOCICOD 10:7 - 9.1 INOCICOD 10:7 - 9.1 INOCICOD 10:7 - 9.1 Interference 2.000 Interference 2.000 <t< th=""><th>7</th><th></th><th>i vilata</th><th></th><th>FORM DGI</th></t<>	7		i vilata		FORM DGI					
ACENNES OF ANTENDENT OF TRANSFER OF LICENCE) FOR THE KEEPING OF DANGEROUS GOODS 34 P203 - 20 24 P	74	DAN		LICENC	E No. 35007680					
Intervent of the licence Strate of the licence for the keeping of dangerous goods in or on the seeping of dangerous goods in or on the service of the licence Image: South complete Given Names Philipping Surame South complete Given Names Philipping Surame South complete Given Names Philipping Image: South complete Given Names Philipping Surame South complete Given Names Philipping Surame South complete Given Names Philipping Image: South complete Given Names Philipping P + E South complete Given Names Philipping Surame South complete Given Names Philipping Image: South complete Given Names Philipping P + E South complete Given Names Philipping Surame South complete Given Names Philipping Image: South complete Given Names Philipping P + E South complete Given Names Philipping Surames South complete Given Names Philipping Image: South complete Given Names Philipping P + E South complete Given Names Philipping Surames South completee Given Names Philipping Image: South complete Given Names Philipping Surames South completee Given Names Philipping Surames South completee Given Names Philipping Image: South completee Given Names Philipping Surames South completee Given Names Philipping Surames South completee Given Names Philipping Image: South completee Given Names Philipping Surames South completee Given Names Philipping Surames South completee Given Names Philipping	APPLICATION FOR L			AC1, 1975						
Or - internet of the licence for the keeping of dangerous goods in or on the contract of the licence WI OB OB OB WI Surname SOUTH COMBE Given Names PHILLIP BARRY.4 Surname SOUTH COMBE Given Names PHILLIP BARRY.4 P 4 E SOUTH COMBE Given Names PHILLIP BARRY.4 B 4 E SOUTH COMBE Given Names PHILLIP BARRY.4 P 4 E SOUTH COMBE Given Names PHILLIP BARRY.4 B 530 VICTORIA PLACE DECOMOUND BUDGS age Postcode 2047 In STD Code Number SIZOIH POStcode 2047 In STD Code Name PLACE Postcode 2047 POStcode 2047 POStcode 2047 POStcode 2047 POStcode 2047 Product being stored Office use only Product Code Intot (kod Into			DANGEROUS GO	DODS A FI	and the second se					
(*delete whichever is not required) Image: Second seco	Application is hereby made fo	* a licence (or a *the transfer of	f the licence	for the keeping of dan	gerous goods in or on the					
NF Surname SOUTH COMBE Given Names PHILLIP BARDY. 4 P9 E SOUTH COMBE - GWARDWOW WARK 330 VICTORIA PLACE DECOMORADOSTOOD 2047 nt STD Code Number 812014. on 380 VICTORIA PLACE DECOMORADOSTOOD 2047 nt STD Code Number 812014. on 380 VICTORIA PLACE DECOMORADOSTOOD 2047 nt STD Code Number 812014. on 380 VICTORIA PLACE DECOMOCHADOSTOOD 2047. PEENSE ATTACH SITE PLAN Postcode 2047. and maximum quantities of dangerous goods to be kept at any one time. Office use only of depot Storage Dangerous goods e over) Storage C & C office use only C & C Office use only Storage 200 Image: Storage C & C ammabel liquid (if any) Image: Storage Image: Storage Image: Storage ammabel liquid (if any) Image: Storage Image: Storage <	premises described below.			Dy Hu	LALCAT 034					
Surame SOUTH COMPE Given Names PHILLIP BARRY. 4 P 4 E SOUTH COMPE GUA MARIA 330 VICTORIA PLACE DRUMMUS WWW 330 VICTORIA PLACE DRUMMOW BOSTOODE 2047 nt STD Code Number \$12014. on 380 VICTORIA PLACE DRUMMOWNE reference Postcode 2047. MARINA. PLEASE ATTACH SITE PLAN and maximum quantities of dangerous goods to be kept at any one time. Postcode 2047. MARINA. PLEASE ATTACH SITE PLAN and maximum quantities of dangerous goods to be kept at any one time. Product being stored Office use only Storage capacity Product being stored Office use only System 2,200 PRTROX 200 V Storage Capacity Product being stored Office use only System 2,200 PRTROX 200 V Storage Capacity Dangerous goods 100 Cl CO 10: 7 - 91 100 Cl CO 10: 7 - 91 1		16			· · · · · · · · · · · · · · · · · · ·					
Surame SOUTH COMPE Given Names PHILLIP BARRY. 4 P 4 E SOUTH COMPE GUA MARIA 330 VICTORIA PLACE DRUMMUS WWW 330 VICTORIA PLACE DRUMMOW BOSTOODE 2047 nt STD Code Number \$12014. on 380 VICTORIA PLACE DRUMMOWNE reference Postcode 2047. MARINA. PLEASE ATTACH SITE PLAN and maximum quantities of dangerous goods to be kept at any one time. Postcode 2047. MARINA. PLEASE ATTACH SITE PLAN and maximum quantities of dangerous goods to be kept at any one time. Product being stored Office use only Storage capacity Product being stored Office use only System 2,200 PRTROX 200 V Storage Capacity Product being stored Office use only System 2,200 PRTROX 200 V Storage Capacity Dangerous goods 100 Cl CO 10: 7 - 91 100 Cl CO 10: 7 - 91 1	FEE: \$10.00 per Depot	4	States 1							
Surame SOUTH COMPE Given Names PHILLIP BARRY. 9 SOUTH COMPE Given Names PHILLIP BARRY. 9 P & E SOUTH COMPE GUA MARIA. P & E SOUTH COMPE GUALOW & USE 330 VICTORIA PLACE DRUMOW BOLOGE 2047 IN STD Code Number 812014. ON 380 VICTORIA PLACE DRUMOWNE Postcode 2047. MARINA. PLEASE ATTACH SITE PLAN and maximum quantities of dangerous goods to be kept at any one time. Postcode 2047. MARINA. PLEASE ATTACH SITE PLAN and maximum quantities of dangerous goods to be kept at any one time. Product being stored Office use only General 2,200 PRTRICK 200 V C & C Office use only C & C Office use only C & C Diffece use only Diffece use	\$ 10.00 -									
P + E SOUTHCOMBE Gullowick brage 370 VICTORIA PLACE DRUMMONAPOStode 2047 nt STD Code Number 812014. on 380 VICTORIA PLACE DRUMMONAPOStode 2047 on 380 VICTORIA PLACE DRUMMONNE end 380 VICTORIA PLACE DRUMMONNE Postcode 2047. Postcode 2047. MAZINA PLEASE ATTACH SITE PLAN Postcode 2047. and maximum quantities of dangerous goods to be kept at any one time. C&C Office use only of depot Storage Dangerous goods C&C e over) Storage Dangerous goods C&C and maximum quantities of dangerous goods to be kept at any one time. C&C Office use only Storage 200 Product being stored Office use only Storage 200 Product being stored Office use only atammable liquid (if any) Itema 2000 Itema 2000 Itema 2000 atammable liquid (if any) Iteence No. 7660.4 Signature of applicant for the	Name of Applicant in full (see over)	Surname SOC	UTHCOMBE	Given Names PHILLI	P BARRY.Q					
330 VICTORIA PLACE DRUMMON Postcode 2047 nt STD Code Number 312014. on 380 VICTORIA PLACE DRUMMONNE eet Postcode 2047. MARINA. PLEASE ATTACH SITE PLAN and maximum quantities of dangerous goods to be kept at any one time. Dangerous goods e over) Storage capacity Dangerous goods e over) Storage capacity Dangerous goods e over) C&& C Office use only Storage Dangerous goods C&& C e over) C&& Q Product being stored Office use only Storage 200 Number 3.200 C&& C Storage 200 Product being stored Office use only Storage 200 Number 3.200 C&& C Storage 200 Number 3.200 Storage ammable liquid (if any) Storage Storage Storage Iteensed? YES C HOTOCOPY ATTACHED). Storage Storage Signature of applicant Storage Date 26.10.82	Trading name or occupier's name (if any)	P 4								
on the event 380 VICTORIA PLACE $DRUMDUNE$ Postcode 2047 . MARINA PLEASE ATTACH SITE PLAN and maximum quantities of dangerous goods to be kept at any one time. Of depot e over) Storage capacity Dangerous goods Product being stored Office use only C & C Quantities of dangerous goods to be kept at any one time. Office use only C & C & C Office use only Office use only C & C & C & C Office use only C & C & C & C Office use only Office use only Office use only All C & C & C aummable liquid (if any) Licence No. 7680-4 </td <td>Postal address</td> <td>380 VIC</td> <td></td> <td></td> <td></td>	Postal address	380 VIC								
The set Postcode 2047 . Postcode 2047 . Please ATTACH SITE PLAN and maximum quantities of dangerous goods to be kept at any one time. C depot C dep	Telephone number of applicant	STD Code	*	Number 812	2014.					
MARINA . PLEASE ATTACH SITE PLAN and maximum quantities of dangerous goods to be kept at any one time. Colspan="2">Dangerous goods Colspan="2">Dangerous goods Colspan="2">C & C C & C Of depot Storage C & C C & C C & C C & C & C Office use only C & C & C C & C & C C & C & C Office use only C & C & C & C Office use only C & C & C & C C & C & C & C C & C & C & C & C & C C & C & C & C & C & C & C & C & C & C &	Address of the premises in or or which the depot or depots ar situated (including stree number, if any)	0 380 .	1CTORIA							
and maximum quantities of dangerous goods to be kept at any one time. The of depot capacity Dangerous goods $C \& C$ Product being stored Office use only $C \& C$ C & C C & C	Nature of premises (see over).									
and maximum quantities of dangerous goods to be kept at any one time. The of depot capacity Dangerous goods $C \& C$ Product being stored Office use only $C \& C$ C & C C & C	+งสิทธิสาขางการสาขางสองส่งในสีของสองสองสองสองสาขารสาขางสองสองสองสองสองสองสองสองสองสองสองสองสอง	PLE	ASE ATTACH SIT	'E PLAN						
Storage capacity Dangerous goods Product being stored C & C Office use only Capacity Product being stored C & C Office use only Capacity 2,200 V Capacity 2,000 V Capacity 2,000 V Capacity 2,000 V Capacity 2,000 V Capacity	Particulars of turn of denote or	ny na balancia (and ny mandro data and a tanàn data ang ang ang ang ang ang ang ang ang an								
Storage capacity Product being stored $C \& C$ Office use only $C \& C$ $C \& C \in C$ $C \& C \in C$		la mayimam dasu	innes of dangerous g	goods to be kept at any one i	time.					
Product being stored Office use only Product being stored Office use only 2 200 PETERNA 2 200 PETERNA 2 200 PETERNA 100 Cl (QD 10: 7 - 9] (NO Cl (QD 10: 7 - 9] 2 200 PETERNA 2 200 PETERNA 2 200 PETERNA 100 Cl (QD 10: 7 - 9] 2 200 PETERNA 2 200 PETERNA 100 Cl (QD 10: 7 - 9] 2 200 PETERNA 2 200 PETERNA 100 Cl (QD 10: 7 - 9] 2 200 PETERNA 2 200 PETERNA 100 Cl (QD 10: 7 - 9] 2 200 PETERNA 2 200 PETERNA 100 Cl (QD 10: 7 - 9] 2 200 PETERNA 2 200 PETERNA 100 Cl (QD 10: 7 - 9] 2 200 PETERNA 2 200 PETERNA 100 Cl (QD 10: 7 - 9] 2 200 PETERNA 2 200 PETERNA				Dangerous	s goods					
Ammable liquid (if any) licensed? TES (PHOTOCOPY ATTACHED) Dis occupier LUCAS MARINA. Licence No. 7680-4 Signature of applicant f. Math.com. Licence No. 7680-4	number (see	over)	capacity	Product being stored						
Invested 10:7-91 des 2002 202 ammable liquid (if any) licensed? YES (PHOTOCOPY ATTACHED). Pus occupier weaks marina. Licence No. 7680-4 Signature of applicant f. Math.com. L. Date 26. 10.82	dhole	ground	2,200	PETROL						
Les 2002 2002 2002 2002 2002 2002 2002 20	2		2, 200							
Les 2002 2002 2002 2002 2002 2002 2002 20	3									
Lammable liquid (if any) licensed? YES (PHOTOCOPY ATTACHED). Dus occupier LUCAS MARINA. Licence No. 7680-4 Signature of applicant Mathcomble. Date 36.10.82	4		checked	10-7-91						
Lammable liquid (if any) licensed? YES (PHOTOCOPY ATTACHED). Dus occupier LUCAS MARINA. Licence No. 7680-4 Signature of applicant Mathcomble. Date 36.10.82	5)					
Lammable liquid (if any) licensed? YES (PHOTOCOPY ATTACHED). Dus occupier LUCAS MARINA. Licence No. 7680-4 Signature of applicant Mathcomble. Date 36.10.82	6	ا]								
Lammable liquid (if any) licensed? YES (PHOTOCOPY ATTACHED). Dus occupier LUCAS MARINA. Licence No. 7680-4 Signature of applicant Mathcomble. Date 36.10.82	7			~						
licensed? YES (PHOTOCOPY ATTACHED). sus occupier LUCAS MARINA. Licence No. 7680-4 Signature of applicant f. Mathconste. Date 26.10.82	8 Cycline	les	2001	LPG)						
licensed? YES (PHOTOCOPY ATTACHED). sus occupier LUCAS MARINA. Licence No. 7680-4 Signature of applicant f. Mathconste. Date 26.10.82	9									
licensed? YES (PHOTOCOPY ATTACHED). sus occupier LUCAS MARINA. Licence No. 7680-4 Signature of applicant f. Mathconste. Date 26.10.82	10									
licensed? YES (PHOTOCOPY ATTACHED). sus occupier LUCAS MARINA. Licence No. 7680-4 Signature of applicant f. Mathcon, Le. Date 26. 10.82	11									
licensed? YES (PHOTOCOPY ATTACHED). sus occupier LUCAS MARINA. Licence No. 7680-4 Signature of applicant f. Mathcon, Le. Date 26. 10.82	12	Manufacture and a state								
Signature of applicant f. Mathcon, Le. Date 26. 10. 82	Name of company supplying fla	mmable liquid (if	any)		na men kan den en e					
Signature of applicant f. Mathconste. Date 26.10.82	Have premises previously been I	icensed? YES	(PHOTO	COPY ATTACHE	ENÌ					
Signature of applicant f. Mathcons Le. Date 26. 10. 82	If known, state name of previou									
Signature of applicant <u>f. Mithcon, Le.</u> Date 26. 10. 82 ne(s), please fill in side 2. Escantacombe				1						
ne(s), please fill in side 2. Esauracombe		Signature	of applicant	Withcom he.	Date 26. 10.82					
	For external explosives magazine	Signature	of applicant	1						

FOR OFFICE USE ONLY

ME 37 FORM B Pore 1

Register No. 7680.

INFLAMMABLE LIQUID ACT, 1915 (AS AMENDED)

Application for Registration of Premises or Store Licence under Division H or for the transfer alteration or amendment of any such Registration or Licence, for the keeping of Inflammable Liquid and/or Dangerous Goods, in accordance with the provisions of the Inflammable Liquid Act, 1915 (as amended), for the ensuing year.

DIRECTIONS

Applications must be forwarded to the Chief Inspector of Inflammable Liquid, Explosives Department, Box R.216, Royal Exchange Sydnev. N.S.W. 2000 and must be accompanied by the prescribed fee, as set out hereunder: Registration of Premises (Fee \$4.50 p.a.) – For quantities not exceeding 300 gallons of mineral oil and 100 gallons of mineral spirit, if kept together; or 800 gallons of mineral oil and 100 gallons of mineral spirit, if kept together; or 800 gallons of mineral spirit, if kept in separate depots; or 500 gallons of mineral spirit, is kept in an underground tank depot; or 800 gallons of mineral oil and 500 gallons of mineral spirit, if mineral spirit is kept in an underground tank depot.
 In addition to, or in lieu of the above, similar quantities of Dangerous Goods of Classes 1 and 2 may be kept under the like conditions; reading Dangerous Goods of Class 1 for the words Mineral Spirit and Dangerous Goods of Class 2 for the words Mineral Oil

words Mineral Oil

Store Licence, Div. A (Fee, \$9.00 p.a.) - For quantities in excess of those stated above, but not exceeding 4,000 gallons mineral oil and/or mineral spirit, and/or Dangerous Goods of Classes 1, 2 and 9.
 Store Licence, Div. B (Fee, See Regulation 7) - For quantities exceeding 4,000 gallons of mineral spirit, and/or dangerous goods of Class 3.
 For the keeping of Dangerous Goods of Classes 3 and/or 4. (\$18.00 p.a.).

Fees for the keeping of inflammable liquid and dangerous goods in excess of the above stated quantities and also for Liquid Petroleum Gas storage are set out in Regulation 7.

1. Name of occupier including full christian names. CLOGUC \$4.50	John Francis Lacas
Rer 9766	
2. Trading Name (if any)	J.F. Lucas & Jone
 Locality of the premises in which the depot or depots are situated 	No. or Name 380 Street Victoria Place
8	Town_ Drummayne
4: Postal address	<u>Q.P. Q.G.a.D.C.</u> Postcode <u>2047</u>
5. Occupation	Dear Duilder
6. Nature of premises (dwelling, garage etc.)	_ BOOT Shod & Stipular

Particulars of construction of depots and maximum quantities of inflammable liquid and/or Dangerous Goods to be kept at any 7 one time

PLEASE ATTACH PLAN OF PREMISES

Depot No.	Construc	ction of depots '		Inflammo	ıble liquid			Dangerou	s goods		
	Walls	Roof	Floor	Mineral spirit gallons	Mineral oilg gallons	Class 1 gallons	Class 2 gallons	Class 3 Ib	Class 4 cu ft	Class 5A water gal	Class 9 gallons
1	Undergr	ound	Tank	500							
2	15		1	500							
3											
4					-						
5			-								
6											-
7					1	PU	BLIC	REV	ENU	EAC	
8						Same (how	lob	21/51	1.50		
9				-		3		1/22	1		
, 10						(Dot	e)	08	11	475	4

Signature of applican

the second		INSPECTION RECORD	
Licen	<u>isee:</u>	Lucas & Sons	Licence No A76 88
<u>Addre</u> Storage licens	ess:	Victoria Rd. Drumme oo Skell.	yne.
Sł	setch of Premises	(Dimensions freepot and distance of same from adjoining "protect	cted works" to be shown).
	NARER /		
		VICTORIA Rd.	e o Fills
Inspected	Initials	Requisitions made or state of d	
30/8/60	lbl	Sat, Gate value situated ne extended there onto jetty for fet.	
			/

Appendix K Hazardous Materials List

Poisons Info Line 13 11 26

1. Antifouling

3. Primers

4. Other

HAZARDU	US MATERIALS LIST		Last update	Nov-18
				Infosafe or
Manufacturer	Name	Colour	Non Hazardous	
Altex Coatings	No. 5 Antifouling	Coloui	Hommazaraoao	9-40672
Akzo Nobel	Ultra Dover white	White		YBA303
	Ultra Blue	Blue		YBA333
	Ultra Black	Black		YBA393
	VC Offshore Part A	Grey		YBA764
	VC Offshore Part B	0.09		YBA780
Jotun	Seaguardian	RD, BLK, BL		MM00000356
ootan	SeaAlu	RD. BLK. BL		MM00001088
Wattyl	Seapro CU120	,,		8073-10
Traily!	Seapro Plus 100			5104-09
Oceanmax	Propspeed Etching Primer Hardener			782BC
oodannax	Propspeed Etching Primer			782BC
	Propspeed Clear Coat			782D
Akzo Nobel	Antifouling Thinner #3			346006
Jotun	Thinner #7			MM00000561
Septone	Acetone			K1H18
Akzo Nobel	Interseal 670 HC	Black		EGZ999
AKZU NUDEI		DIACK		
	Interseal 670 HS Curing Agent	Deal		EGA245
DDO	PA 10 Red Primer	Red		YPA320A
PPG	Amercoat 771	Brown	l	0771 Black
	Propspeed Etching Primer	Red		348003
Jotun	Safeguard Part A			MM00001055
	Safeguard Part B			MM00001063
	Penguard HB Part A			MM00000613
	Penguard HB Part B			MM00000612
	Vinyguard	Silver		MM00000765
Sigma	Sigma EP Tiecoat Part A			55671 55672 Sigmarine28
	Sigma EP Tiecoat Part B Sigma Marine 28 Grey			
		Grey		Sigmarine28
Castrol	Super Outboard 4- Stroke oil			15412
Mobil	Unleaded Petrol		Non Hazardous	CAS5S
	Organic Peroxide			29033
Pool Clear	Pool Acid			1HH06
FGI	Catalyst			1866
	Pigment			3105
	Styrene			1HKOB
Septone	Hull Cleaner & Stain Remover	Clear		SEPCL
	Timber deck cleaner & Rust Remover			MCTD20
	Drifter Hull Cleaner & Stain Remover			SEPD3
	Citra Scrub			KIH4E
	Marine Clene			KIH4F
	Premium Glass Cleaner			KIH3V
3M	Marine Fibreglass Restorer & Wax			KIH4H
	One step Cleaner & Wax			P/N38221
Top Gear	Versatile	Clear		Non Allocated
i op oodi	Gelcoat Rejuvenator Part A	0.00		
	Gelcoat Rejuvenator Part B			
Omicron	Supergloss			
Officient	Ultimate Sheen			
	Tuff Wash H/D Laundry Powder			
	Clear View	<u> </u>	ł	
Sun Marina	Inflatable Boat Cleaner	-		
Sun Marine				
	Ocean Breeze			
Dive Clas	Royal Wash & Wax			
Blue Sky	Enduragleam	+	ł – – – – – – – – – – – – – – – – – – –	
	Sodium Hypochloride (Bleach)			
	Deodoriser & Cleaner (Antiseptic)			
Orica	Polyaluminium Chlorinde Solution	Clear		15710
Genesis	Tenax			Carpet Powder
Clean Plus	Handwash Pink	Pink		
	Vuplex			
Global Spill	Ardrox 6120	Clear Amber		Ardrox 6120

Appendix L Background Sediment Data

- Photos

				Ν	Aarine Po	llution R	esearch -	Gladesvi	lle Bridge	e Marina	Sediment	t Samplin	g Results	15/05/20	19					
Analyte	LOR	Units	ANZEC	CC ISQG	1S	1B	2S	2B	3S	3B	4S	4B	5S	5B	6S	6B	7S	7B	8S	8B
			Low	High																
Fines (<75 µm)	1	%			44	52	19	26			34	24			19	14			15	13
Sand (>75 µm)	1	%			19	17	77	64			53	45			79	67			81	67
Gravel (>2mm)	1	%			37	31	4	11			13	31			2	19			4	20
Cobbles (>6cm)	1	%			<1	<1	<1	<1			<1	<1			<1	<1			<1	<1
Antimony	1	mg/kg	2	25	<1.0	11.1	3	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Arsenic	1	mg/kg	20	70	5.4	3.2	2.0	2.2	3.8	2.6	4.7	3.2	3.0	3.1	3.1	2.2	2.9	3.0	3.2	3.6
Cadmium	0.1	mg/kg	1.5	10	0.3	0.3	0.2	0.3	0.2	0.2	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Chromium	1	mg/kg	80	370	38.6	28.9	20.4	22.0	20.0	21.1	30.2	19.4	17.9	13.7	18.0	18.4	13.3	12.0	10.9	9.8
Copper	1	mg/kg	65	270	65.9	39.7	84.0	66.6	56.5	41.0	81.1	61.0	46.5	33.8	45.6	36.4	29.3	28.8	27.9	27.0
Lead	1	mg/kg	50	220	191.0	240.0	117.0	162.0	141.0	133.0	163.0	128.0	91.6	74.0	93.3	95.6	68.6	70.3	64.4	59.8
Nickel	1	mg/kg	21	52	3.0	3.4	2.4	2.8	2.5	2.2	3.6	2.9	1.9	1.7	2.0	2.0	1.6	1.4	1.3	1.2
Silver	1	mg/kg	1	3.7	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Zinc	1	mg/kg	200	410	331	378	346	436	353	262	282	183	167	124	166	168	124	115	110	90
Mercury	0.1	mg/kg	0.15	1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	0.16	< 0.1	< 0.1	< 0.1	0.11	< 0.1	0.16	< 0.1	0.17	< 0.1
Total Organic Carbon	0.02	%			1.4	3.4	1.4	1.8			5.0	6.7			0.8	0.7			0.5	0.3

www.zoic.com.au